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Abstract

Concurrent C0 is a type-safe, C-like language with session-typed communication

that makes writing highly concurrent, message passing programs easier, safer,

and more efficient than other languages. Concurrent C0 presents a novel inter-

pretation of a forwarding operation which allows channels to be combined in a

well-defined way. We provide C- and Go-based implementations with language

based optimizations that outperform traditional message passing techniques.
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Chapter 1

Introduction

Message passing is an approach to concurrent programming where processes1 do not operate di-

rectly on shared state but instead communicate by passing messages over channels. Many modern

languages like Go, Rust, and Haskell provide channels implemented in shared memory to facilitate

safe concurrent programming through message passing.

Channels make concurrent programming easier by eliminating the need for locks in common

communication patterns. They enable the programmer to easily send or receive data across the

channel in a synchronous or asynchronous manner. Synchronous communication means a send

operation will not complete until the process on other end of the channel receives. In an asyn-

chronous model, the channel contains a buffer so the sender can store the message and proceed

without it being received right away; for this reason, asynchronous communication is also called

buffered communication.

However, conventional asynchronous channels do not easily enable safe bidirectional commu-

nication. If a process A sends a message to process B and wishes to receive a response, simply

receiving from that same channel may result in A receiving its own message (see Figure 1.1).

Clearly, A intended to receive a response from B, but, due to the asynchronous nature of communi-

cation, there’s no guarantee that B receives A’s message before A attempts to receive B’s response.

There are a number of existing approaches used by modern programming languages to address this
1Throughout this paper, a process refers to a unit of execution abstracted from its implementation. Process

implementations can range from coroutines within a single thread to machines communicating over a network.
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receive-your-own-message problem:

• The language could simply leave it up to the programmer, allowing arbitrary send and receive

operations. Haskell takes this approach2.

• To provide some amount of safety, the language could allow the programmer to locally con-

strain channels as one-way. Go has bidirectional channels by default, but it allows this

restriction3. Constraining channels allows two entities (a channel for each direction) to safely

enable bidirectional communication, although constraining the direction is left up to the

programmer.

• For complete safety, channels should be limited to unidirectional communication. In this case,

a channel requires distinct endpoints or handles for sending and receiving, as well a type sys-

tem that safely prevents aliasing of these handles. Rust takes this approach4, providing truly

safe bidirectional communication, but requiring four entities (two channels, two endpoints

each) to do so.

Figure 1.1 shows a Go program where communicating a very basic client/server protocol over

a single channel goes awry. The problem arises when the client—after sending a “hash” request to

the server—tries to receive the response. Because Go channels are bidirectional by default5, the

client may instead receive its own message (0xbadc0de in this case). Not only is this a very poor

hash, but now the server may be waiting indefinitely for a message from the client. In a more

sophisticated protocol, this could lead to deadlock. In Go, this could be alleviated by using an

unbuffered channel (implementing synchronous communications), using two one-way channels, or

implementing some kind of synchronization to prevent receiving your own message; but each of

these entails additional complexity or loss of concurrency.

Furthermore, channels are typically either dynamically typed or statically given a single type

that represents what can be sent. When communication involves multiple types of data, as is often
2http://hackage.haskell.org/package/base-4.8.2.0/docs/Control-Concurrent-Chan.html
3https://golang.org/ref/spec#Channel_types
4http://doc.rust-lang.org/std/sync/mpsc/
5Go does allow one-way channels of a sort, but does not offer truly distinct one-way endpoints like Rust. One-way

channels would solve this particular problem at the expense of having to use two separate channels.
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func client(ch chan int) int {
ch <- 0xbadc0de // send request
response := <-ch // get response
return response

}

func hashServer(ch chan int) {
request := <-ch // get request
response := (request & 37892) * 232341
ch <- response // send response

}

func main() {
ch := make(chan int, 1) // buffered chan
go hashServer(ch) // run concurrently
response := client(ch)
fmt.Printf("Response: %x\n", response)
// output: "Response: badc0de"

}

Figure 1.1: Go program where the client may receive its own request instead of the server’s response.

the case when adhering to a complex protocol, typed channels must be created with the sum of

those types. To receive from sum-typed channel, the receiver must check the actual type of the

value, typically producing errors if the received type was not what was expected (see Figure 2.2a).

This approach is verbose and essentially degenerates to that of a dynamically typed language,

because typed channels do not encode any temporal properties of the protocol.

We propose the Concurrent C0 language as a tool to enable safer, more efficient concurrent pro-

gramming. Like other modern languages, it provides concurrent processes that communicate over

channels. It uses session typing to guarantee the safety of communication and also to alleviate the

burden of manually synchronizing bidirectional communication [3, 6, 10]. Furthermore, Concurrent

C0 offers a concise syntax to express session typed protocols and programs adhering to them. The

forwarding operation creates ways to write programs not possible in other languages with message

passing. These language features not only provide additional safety, but also enable an efficient

implementation with memory and performance optimizations.

In Chapter 2, we provide a high-level overview of the Concurrent C0 language, including the
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benefits of its session typing system and a demonstration of how it facilitates safe concurrent

programming. In Chapter 3, we explain the challenges for an implementation and our solution.

Chapter 4 analyzes the performance benefits of our implementation with benchmarks. Finally,

Chapter 5 explores potential uses and extensions of this work.
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Chapter 2

Concurrent C0

Concurrent C0 is an imperative language in the C style: for sequential programs, Concurrent C0 is

nearly identical C in its syntax and semantics, but it avoids undefined and implementation-defined

behaviors (see Section 2.1). Concurrent C0 facilitates concurrent programming by allowing process

spawning and manipulation with safe message passing over channels1. Lightweight, C-like syntax

enables users to concisely specify protocols as session types, and the session type system with

linearity ensures the safety of concurrent code.

The semantics of Concurrent C0 provides many guarantees for concurrent programs: they

will not deadlock, communicated values are guaranteed to be of the specified type, and process and

channel resources cannot be leaked. We also introduce a novel interpretation of a forward operation

that allows programs to safely manipulate the communication structure in such way that would be

impossible or cumbersome to do so without it.

2.1 C0

Concurrent C0 is based on C0, an imperative programming language closely resembling C designed

for use in an introductory programming course. C0 intends to have fully specified semantics to
1In the current implementations of Concurrent C0, processes are units of execution within a single operating

system process, and channels are implemented in shared memory. The features of Concurrent C0 generalize to any
communicating processes, but this paper focuses on a shared memory implementation. For other applications, see
Chapter 5.
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avoid the confusion that comes along with C’s undefined behavior [1].

C0 supports optional dynamically checked contracts of the familiar forms @requires, @ensures,

and @assert. Students use these contracts to learn how to reason about their code; in particular,

the special @loop_invariant form allows students to reason about their loops [7].

As memory management is a common stumbling block for students, C0 provides complete mem-

ory safety. Pointers and arrays are distinct, and accesses are NULL-checked and bounds-checked,

respectively. C0 provides only two allocation primitives: alloc for structures and pointers, and

alloc_array for arrays. Allocation always zeroes memory first, so the user cannot access unini-

tialized memory. Large types (structs and arrays) cannot be stack-allocated in C0, and there is

no address-of operator or pointer arithmetic, so one cannot obtain a reference to anything that

did not result from a call to alloc or alloc_array. Finally, C0 uses the Boehm-Demers-Weiser

conservative garbage collector [2], eliminating the need to explicitly free memory.

The C0 compiler generates human-readable C code with these additional safety features that is

then sent to a C compiler.

C0 is used at Carnegie Mellon in the Principles of Imperative Computation course (15-122). In

this first year course, students learn the basics of imperative data structures and algorithms in C0,

and then transition into C later in the the course. In the Compiler Design course (15-411), students

design and build compilers for a subset of C0, starting with arithmetic operations and finishing

with an optimizing compiler for nearly the complete language.

Concurrent C0 (CC0) is a strict extension of C0, so all C0 programs still compile. This provides

safety for the sequential aspects of programs written in CC0, and it also enabled us to base our

implementation on the C0 compiler. The session-typed concurrent extension is delimited from the

sequential language, and thus this paper’s contributions could be readily applied to any language

with a similar session-typed linear semantics.

2.2 Concurrency

Concurrent C0 extends C0 with the ability to create concurrent processes and channels to commu-

nicate between them. A process in Concurrent C0 is a unit of concurrent execution, distinct from
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the notion of a process in operating systems. Channels behave as unbounded buffers2 and allow

the processes on either end to communicate asynchronously. Consider the following declaration for

a function that will concurrently calculate the nth Fibonacci number:

<!int;> $c fib(int n);

The right-hand side looks familiar; this is a function named fib that accepts an int parameter.

As expected in a C-like language, the return type is on the left-hand side. This return type states

that fib returns a channel $c with the session type <!int;>. Session types in Concurrent C0 will

be covered detail in Section 2.3, but for now this type denotes that an int will be sent along $c.

Spawning functions must provide a name (always preceded by a $) as well as a session type for the

returned channel, so the channel can be referred to inside the function body. Spawning functions

create and return a channel immediately, spawning a concurrent process that will communicate

along the returned channel. The spawned process is referred to as the provider (or server) and the

caller of the spawning function is referred to as the client. Jumping ahead to Section 2.3, it is now

up to the provider to communicate along the returned channel according to the specified session

type.

Figure 2.1 provides an example with very simple session types to demonstrate CC0’s concurrent

programming mechanisms. The client, main(), spawns a fib(10) provider and then receives on

the resulting channel. Note that the spawn does not block the main() process, but the receive

does. Communication in CC0 is asynchronous (channels are always buffered), so sends are always

non-blocking, but receives have to block until a message is available.

In the trivial cases, the fib(n) will send back the appropriate value across the channel (without

blocking) and then close the channel. The close operation must be a provider’s final action on a

channel, notifying the client that the communication across the channel is now complete. In other

cases, the fib(n) process will spawn two concurrent processes to calculate fib(n-1) and fib(n-2).

After receiving a value, the parent fib(n) will wait for the children to terminate before sending

the result back.
2For some session types, we can use a bounded buffer in place of an unbounded one. See Section 3.1.2.
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<!int;> $c fib(int n) {
if (n == 0) {

send($c, 0); close($c);
} else if (n == 1) {

send($c, 1); close($c);
} else {

<!int;> $c1 = fib(n-1);
<!int;> $c2 = fib(n-2);
int f1 = recv($c1); wait($c1);
int f2 = recv($c2); wait($c2);
send($c, f1+f2); close($c);

}
}
int main() {

<!int;> $c = fib(10);
int f = recv($c); wait($c);
assert(f == 55);
return 0;

}

Figure 2.1: Naive concurrent Fibonacci in CC0.

The compiler statically verifies that sends and receives are performed in the proper order with

the proper types according the channel’s session type. Also, the compiler makes sure that all

channels are closed and properly waited for. Section 2.3 and Section 2.4 covering session types and

linearity will go into more detail on this.

2.3 Session Types

In concurrent programming, communication between two processes is often supposed to follow some

sort of protocol. By adding a type discipline to the (untyped) π-calculus, session typing presents

a method of encoding the type of this communication: sequences of types represent how the type

changes as the communication takes place [3, 6, 10]. Each type in the sequence is designated as

sending or receiving, encoding the direction of communication. This captures the temporal aspect

of concurrent communication in a way that conventional (monotyped) channels do not: the type

actually reflects processes’ progress in communicating with one another.
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data Protocol = AInt Int
| ABool Bool

server toClient toServer = do
writeChan toClient (AInt 42)
writeChan toClient (ABool True)
shouldBeInt2 <- readChan toServer
case shouldBeInt2 of

AInt i2 -> print i2
ABool b -> error "should be an int"

main = do
toClient <- newChan
toServer <- newChan
-- forkIO will run server concurrently
forkIO (server toClient toServer)
shouldBeInt1 <- readChan toClient
case shouldBeInt1 of

ABool b -> error "should be an int"
AInt i1 -> do

shouldBeBool <- readChan toClient
case shouldBeBool of

AInt i2 -> error "should be bool"
ABool b ->

writeChan toServer (AInt (i1+1))

(a) Implementation in Haskell.

typedef <!int; !bool; ?int;> protocol;

protocol $c server() {
send($c, 42);
send($c, true);
printint(recv($c)); // receive i2
close($c);

}

int main() {
protocol $c = server();
int i1 = recv($c);
bool b = recv($c);
send($c, i1+1);
wait($c);
return 0;

}

(b) Implementation in Concurrent C0.

Figure 2.2: A simple protocol where the server sends an int, then a bool, then receives an int.

In Concurrent C0, session types are represented as a semicolon-separated sequence of types

between angle brackets. Each type is preceded by either ! or ? to denote that a message of the

given type is sent or received, respectively. For example, a type where the provider sends an

int, then a bool, then receives an int would be written as: <!int; !bool; ?int;>. The final

semicolon is required; it indicates the end of communication along that channel.

Being able to give a type to even very simple protocols can drastically simplify communica-

tion code. Figure 2.2a and Figure 2.2b provide programs in Haskell and CC0 that implement the

<!int; !bool; ?int;> protocol. The Haskell program uses two channels to implement bidirec-

tional communication and avoid the receive-your-own-message problem mentioned earlier. Note

also that Haskell, a language with a very powerful type system including sum types, degenerates

to the approach of dynamically typed language: it must check each received value to safely assert

that it is of the expected type.

Note how, in Figure 2.2b, the provider (server) behaves according to <!int; !bool; ?int;>,

but the client (main) does the opposite, receiving where the other sends. Concurrent C0 uses
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dyadic session types that model the client/provider relationship. Because both ends of the channel

communicate using the same protocol, it suffices to just give one type; we type the session from

the provider’s point of view. The client will then have to obey the dual of that type. Duality is an

important notion in session typing that captures the requirement that communication actions occur

in pairs: if a provider is sending an int, the client must be receiving an int. Readers interested in

the theory behind duality in Concurrent C0’s session types are referred to [3].

Session typing systems provide session fidelity, the property guaranteeing that processes send

and receive the correct data in the correct order according to the session type of the channel.

Session fidelity is the theoretical basis on which CC0 achieves type safe, deadlock-free concurrent

execution [4, 6]. Because session types track the expected type and direction of communication as it

takes place, we can provide errors concisely stating how and when a protocol is violated. Consider

if the line bool b = recv($c) were removed from the Figure 2.2b example. Receiving that value

does not actually affect the program execution: sending back the integer does not depend on this

boolean. Still though, the client main() is not adhering to the agreed upon protocol of $c, and the

CC0 compiler will reject this program with the following error message:

client sending along channel providing output $c : <!bool;?int;>
send($c, i1+1);
~~~~~~~~~~~~~~

Compilation failed

In this case, the client should have received a bool along $c (!bool from the provider’s point

of view, as is conventional), but instead the client attempted to send an int (meaning the provider

would have received, ?int). In this way, the compiler can represent a protocol adherence error as

a “type mismatch” error that should be familiar to most programmers.

Presently, session types can include “small” (word-sized) types: ints, bools, etc. Channel

references and function pointers are also small types, so they can safely be sent over channels as

well. The limitation to small types serves only to simplify our implementations; there’s no technical

reason that large types (structs) could not be supported. Because pointers and arrays are small

types, they can be sent over channels; however there is currently no way to enforce the safety

(statically or dynamically) of accesses to memory shared between CC0 processes. This issue is not
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choice calc {
<?int; !bool;> IsEven;
<?int; ?int; !int;> Mult;
<?int; ?int; !choice div_result> Div;

}

choice div_result {
<!int;> DivOk;
< > DivByZero;

}

<?choice calc> $c calculator() {
switch ($c) {
case IsEven: ... break;
case Mult: ... break;
case Div: ... break;
...

Figure 2.3: A calculator protocol with internal and external choice.

yet addressed in the current implementation, and Chapter 5 discusses potential solutions.

2.3.1 Branching

Many protocols are not characterized by a straightforward sequence of types. A provider may need

to respond to various kinds of requests from the client, or respond in different ways. The concept

of choice encodes this: parties send and receive labels indicating which branch of the protocol to

take. To denote session types that branch, CC0 uses the keyword choice. Choices are declared in

a manner similar to structs: a list of labels preceded by types. Using these constructs, one can

concisely express even complex session types in a way fits with the rest of the C-like syntax.

Consider the definition of choice calc in Figure 2.3. A process would provide this service

along a channel of type <?choice calc>, with the ? denoting that it will receive a label from the

client indicating which branch to take. We call this an external choice because the client is making

the decision. External choices are a natural way to encode a server request: the client dictates the

type of action the server takes.

Note the lack of a semicolon at the end of <?choice calc> because the types within the choice
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are semicolon terminated, indicating the end of the type.

Branches are selected by sending and receiving labels, the values of choice types. Labels are

sent using dot notation: $c.Label. In CC0, the switch operator is used to receive values of

choice types: when it takes a channel variable, it receives and cases on the possible labels. The

case branches must follow the appropriate session type, as indicated by the label. For example,

in Figure 2.3, the compiler will make sure that the code in the IsEven branch sends an int then

receives a bool.

To add a division operation to our simple calculator protocol, just adding a branch that looks

like <?int; ?int; !int;> Div; would be insufficient; we need a way to tell the client that di-

vision failed if they requested a divide-by-zero. This introduces the internal choice, where the

provider specifies which branch the client will take. Intuitively—as this is where the provider

sends the choice—we specify the internal choice with !choice. Figure 2.3 provides a definition of

choice div_result, an internal choice meant to be sent back to the client as the response to a

Div request.

In Concurrent C0, choices allow the user to name a session type, also giving the ability to

specify recursive ones. Without recursion, the language would only permit one-time-use protocols.

In Figure 2.4, choice ints is a recursive session type for a provider that offers a stream of integers.

Like a conventional server, a process providing choice ints will persist and serve multiple requests

until the client requests its termination using the Stop label.

Because Concurrent C0 is an imperative language, users can write loops to implement providers

that adhere to recursive session types. CC0 also provides tail recursion for processes; a provider

can “become” a new provider of the same session type: $c = from(n+1);. CC0 guarantees that

a new process is not spawned in this case, the call is executed in place by the current provider.

Note that a tail call does not return; the caller terminates and is effectively replaced by the callee.

Figure 2.4 shows both styles of implementing recursive session types.
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choice ints {
<!int; ?choice ints> Next;
< > Stop;

};

typedef <?choice ints> ints;

ints $c from(int n) {
switch ($c) {

case Next:
send($c,n);
$c = from(n+1);

case Stop:
close($c);

}
}

ints $c from(int n) {
while(true) {

switch ($c) {
case Next:

send($c,n);
n += 1; break;

case Stop:
close($c);

}
}

}

Figure 2.4: A session-typed stream of natural numbers with an imperative-style implementation
using a loop and a tail recursive implementation.

2.3.2 Synchronization Points

Session types allow bidirectional communication, but only in one direction at a time. Consider

process A providing to client B (denoted A ⟜ B) with the type <?int; ?int; !bool;>. The

direction of communication starts out toward the provider: A is receiving and B is sending. Because

of the asynchronous, concurrent nature of communication in CC0, this can happen a number of

ways. B might run first, sending both ints before A has even called recv. Likewise, A might run

first, call recv, and block before B even gets a chance to run. Session fidelity promises that the

communication will work out in the end, but there are many possible concurrent interleavings for

even this very simple session type.

Despite the many interleavings for the two sends, consider when A has received both ints and

is about to send the bool. A has received everything B sent, but A has not sent anything yet, so

we know the channel buffer must be empty. Also, we know that B has sent both ints, so its next

action will be to receive; both A and B are at the at the same point in the session type. Once A

sends the bool, the flow of communication is towards the client.

When session types change direction (from ?int to !bool in the previous example), we call
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this a synchronization point: both processes must be in the same place in the session type and the

buffer must be empty, allowing the direction of communication to switch. Synchronization points

occur whenever a session type—even recursive ones—change directions; a more formal treatment

can be found in [8].

Synchronization points enable Concurrent C0 to provide bidirectional communication from the

programmer’s perspective, but messages really only go one way at a time. This design is driven by

the assumption that bidirectional communication is only useful when synchronized; in other words,

one party can only say something useful once it has heard everything the other party has to say.

This notion is supported by the sequential nature of session types: a process must perform the

actions in order.

2.4 Linearity

Linearity plays a key role in CC0’s session typing system [3], most directly influencing the use of

channels. CC0 channel variables have linear semantics, but with two references: at all times exactly

one client and one provider will have a reference to a channel. If A ⟜ B along the channel $c,

then only processes A and B have a reference to $c. This ensures that communication is always

one-to-one; there can never be a “dangling” channel with no one listening on the other end, nor will

there ever be multiple providers or clients fighting to communicate in one direction over a channel3.

Because a provider can only have one client at a time (initially the caller of the function that

spawned it), there is a natural correspondence between the client-provider relationship in a CC0

program and the parent-child relationship a tree. The main() function is a process with no clients

and therefore the root of the tree. If A⟜ B, then A is a child of B in the tree. Figure 2.5 gives the

process tree for naive concurrent Fibonacci. The process tree also includes the Fibonacci number

sent back across the channel. Recall that each node in the tree is a concurrently executing process,

and each edge is a channel.

CC0 provides the close and wait primitives so the provider and client can satisfy the linear type
3 CC0 implements linear channels from [3, 8] which have exactly one client. The same paper provides a notion of

shared channels which can support multiple clients, but these are not presently in CC0.
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Figure 2.5: Process tree for naive Fibonacci (code in Figure 2.1).

system. When done providing across a channel $c, a provider must call close($c) to terminate.

The provider must have already consumed all of its references and be a leaf in the process tree.

Likewise, a client with a reference to a channel $c must call wait($c) to ensure the provider

terminates before destroying the channel.

Channel references can be manipulated like other variables, but they are still subject to linearity

throughout the whole program. They cannot be copied, only renamed; the old reference cannot be

used. When passing a channel into a spawning function, the caller gives up its reference to allow

the new process to use the channel. Sending channels along channels works much in the same way:

the sender gives up its reference to the receiving process. Linearity ensures that channel references

are not leaked or duplicated, so the process tree will remain a tree even with dramatic manipulation

of the communication structure.

2.5 Forwarding

So far, the concurrency primitives are similar to the fork/join model where parents must survive

to collect their children. Spawning grows the process tree by adding providers as children, and the

wait operation allows parents to “join” their terminated children, reducing the process tree from

the bottom up. Linearity ensures that a parent cannot terminate while it has running children.

17



P Q R
$c $d

P R
$c

Figure 2.6: Process Q executes the forward $c = $d when messages are flowing to the right.

Concurrent C0 implements an operation called forwarding which allows a process to terminate

before its child and remove itself from the process tree. Forwarding is not present in other languages

with message passing (Go, Haskell, Rust, etc.). Consider a process Q providing across channel $c

that has a child providing to it along $d (see Figure 2.6) where $c and $d are of the same session

type. If Q has no more work to do, instead of staying alive just to pass messages between $c

and $d, it can execute a forward: $c = $d. The forward makes channel $c behave like $d, and

Q terminates. Because forwarding terminates the process, linearity dictates that all of its other

references must have been properly destroyed when it forwards. Nodes like Q with one exactly

child can be contracted by the forward operation, allowing Q’s parent and child to communicate

directly without Q in the middle. This enables the programmer to shrink the process tree from

locations other than the leaves.

Forwarding is transparent to other ends of the channels involved in the forward. Neither P nor

R can tell when Q forwards. The channels $c and $d still behave according to their session type

even though someone else is on the other end. Because a process can only forward channels of the

same session type, session fidelity is preserved and communication continues as if nothing happened

[8]. The Deq case in Figure A.1 line 23 demonstrates how telling channel to transparently “behave

like” another channel is a useful: dequeuing should make a queue behave exactly like the rest of

the queue.

At a very high level, forwarding can be thought of as setting a channel equal to another channel

(and the $c = $d notation comes from this intuition), but its semantics and implementation are

more complicated. For example, in Figure 2.6, how do we choose $c to persist instead of $d? What

happened to the messages in $d?

Concurrency is another challenge to understanding forwarding. Because of asynchronous com-

munication, a provider and client may disagree on the session type of a channel. Even though the

forwarding process sees the two channels have the same session type, the outer processes may still
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be waiting on messages. Forwarding terminates the process and closes one of the channels, but

it is not obvious how to deal with buffers that contain messages. Simply combining the channels

by concatenating the buffers does not work; see Figure A.2e for an example where messages are

flowing in opposite directions.

We propose an alternate view of forwarding: as a special kind of message. Treating forwards in

this way allows their execution to be deferred until the processes agree on the session types and one

of channels involved is empty. We use the session typing system to send a special forward message

in the direction of communication according to the forwarding process. In the Figure 2.6 example,

Q would send a message along $d containing its reference to $c before terminating. When R

receives the message—and we know it will be receiving because Q sent the message in the direction

of communication—$d must be empty because because Q terminated after sending the forward

message. R will then destroy the empty channel ($d) and change its own channel reference to the

one from the forward message ($c). This maintains the transparency of forwarding: the session

type of $d from R’s perspective when it receives the forward is the same as the type of $c from Q’s

perpective when it executed the forward, so session fidelity is still preserved.

Figure A.2 contains a more detailed example of how forwarding works, including a situation

where, because of the asynchronous and concurrent nature of communication, the actual direction

of the channel buffers does not coincide with the direction of communication according to the

session type (see Figure A.2e). Figure A.3 contains a more complex program where forwarding,

combined with sending and receiving channels, allows restructuring of communication to model the

restructuring of a list.

Interpreting forwarding as a message allows us to understand forwarding in the context of

concurrency, which is important for a shared memory implementation. Section 3.1.3 discusses the

details of our implementation, but it’s important to note that this interpretation of forwarding

allows implementation on any level. This view of forwarding, to the best of our knowledge, is a

novel contribution of this work, and could be implemented in any session typed, message passing

language. Chapter 5 discusses potential future work in the distributed setting where the forward-

as-message interpretation would be imperative for a correct, efficient implementation.
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Chapter 3

Implementation

Concurrent C0’s typing system not only ensures the safety of concurrent code, but it also allows

for an efficient parallelizable implementation. Session typing directly enables our implementation

to use fewer, smaller buffers than other message passing techniques.

3.1 Compiler

Concurrent C0 enforces linearity and session fidelity to produce safe concurrent code. The compiler

typechecks programs to make sure that messages are sent and received according to the appropriate

session types, and it also ensures that the linearity of channels is respected. While certainly

important to CC0, the typechecker itself is not a novel contribution of this work, and interested

readers are referred to [5] for more about typechecking session typed and linear languages. After

typechecking, the compiler inserts annotations that inform the runtime about the communication

structure. Finally, CC0 source code is compiled to a target language (C or Go) then linked with a

runtime implementation written in the same target language.

3.1.1 Shifts

As seen in Figure A.2, the direction of asynchronous communication is not a straightforward notion.

There are actually three relevant directions (that may not all agree): the actual direction of messages

in the channel buffer and the directions of the next actions of the two processes. The session
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typing system for Concurrent C0 as described in [8] uses polarized logic to encode these three

directions. Session types are polarized as positive or negative when the provider is sending or

receiving, respectively. To transition from a positive to negative type, a process sends a shift,

and receiving a shift takes the type from negative to positive. Polarity captures the mismatch

between provider and client perspectives; a provider that sends a message and then a shift will

have negative polarity, but the client will have a positive polarity until it receives the shift. When

a shift is received, we know that the provider and client have the same polarity and that the buffer

is empty. Receiving a shift is a synchronization point (Section 2.3.2).

Shifts allow our implementations to keep track communication direction and process polarity

without burdening the programmer. The CC0 compiler infers where shifts should go, sending or

receiving shifts appropriately when a session type goes from sending to receiving. Shift inference

allows programmers to use CC0 without knowing about shifts at all.

In the logic, there are shifts that convey information other than direction changes (explicit

synchronization, affine channels), but those features are not presently in Concurrent C0 [8]. Because

the CC0 compiler can statically infer the direction of communication, shifts are optimized out of

the implementations; they are simply no-ops.

3.1.2 Type Width

Certain session types dictate that only so many values can be buffered at a time. For example,

the type <!bool; ?int;> could only possibly buffer one value at a time, because the int must be

sent from the client, which can only occur once the client has received the previous the bool. This

quantity is called the width of the type. The CC0 compiler infers widths, allowing the runtime to

use small, fixed length circular buffer as queues and not have to worry about ever resizing.

Session types can be viewed as a directed graph in which a walk represents a possible sequence

of sent or received types. Nodes are colored as sending (green) or receiving (red); see Figure 3.1. We

know that the buffer will only contain messages going in one way at a time, so there are actually two

graphs, one red and one green, connected by the dashed gray edges representing synchronization

points where we know the buffer will be empty. Thus, the width of the type is the longest walk in
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typedef amount int;
typedef balance int;
typedef payment int;

typedef <?choice atm> atm;

choice atm {
<?amount; !balance; atm> Deposit;
<?amount; !choice result; atm> Withdraw;

};

choice result {
<!payment; atm> Success;
<atm> Overdraft;

};

Figure 3.1: Code and graph of type atm with width 2.

either the red or green subgraph.

An ATM is a canonical example in the session typing literature, and Figure 3.1 shows the code

and type graph for a simple ATM protocol. A process providing <?choice atm> could clearly stay

alive forever: the client may Deposit or Withdraw an unbounded number of times. However, the

width of the type is only 2; so the channel will never need to buffer more than two items.

Because width is derived from longest walk not and longest path, it can be efficiently calculated.

First, decompose the graph into the two subgraphs: sending and receiving. If a cycle is found in

either subgraph, the width is infinite, and the communication may buffer an unbounded number of

values. If not, then both subgraphs are DAGs, and the longest path can be obtained using a shortest

path algorithm on the graph with negated edge weights. Note that the longest walk will never cross

between the sending and receiving subgraphs, because those edges represent synchronization points.

The compiler passes type width information to the runtime, which uses small, fixed size buffers

when possible.

Note that type width is compatible with forwarding because of the forward-as-message inter-

pretation. Section 3.1.3 details how forwards are received instead of the intended message, so the

forward message will occupy that allocated space.
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3.1.3 Forwarding

Forwarding is not typically part of a message passing system, so implementing it safely and effi-

ciently was not obvious. Early implementations of the runtime attempted to carry out forwards

as soon as they were executed. These implementations suffered from deadlocks and race condi-

tions from the challenges of forwarding in an asynchronous environment. Section 2.5 presents the

forward-as-a-message interpretation that solves those concurrency issues. This view of forwarding

made for a much simpler implementation that—because forwarding is now just a message—takes

advantage of the message passing functionality already present in the system.

At each forward call-site, the CC0 compiler infers the direction of communication according

the forwarding process’s session type. In the generated code, that direction is passed into the

forward runtime function. Just like the semantic understanding, the runtime sends a specially

tagged message in that direction and then terminates the calling process. Nothing else occurs until

the forward is received.

A process attempting to receive another value may see the special forward tag instead. The

forward message is guaranteed to be the last message in the buffer, so the receiving process destroys

the channel. The forward message contains a reference to the new channel, so the receiving process

replaces its own reference to the destroyed channel with the new one, and then it attempts to

receive the value it initially expected over that new channel. This ensures the transparency of the

forward: this process is still going to receive the value that it expected, and all future interactions

over that channel reference will use the new channel instead. Because forwards are deferred, the

receiver may to need to handle many forwards before getting the expected message.

3.2 Runtime System

The CC0 compiler generates C or Go code that is linked with one of several runtime systems

that contain the logic for message passing and manipulating processes. The runtimes have different

threading models and synchronization strategies, but they share the same general structure centered

around channels. Figure 3.2 shows the definition of the channel data structure. As mentioned in
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typedef enum {
TO_PROVIDER,
TO_CLIENT

} channel_dir_e;

struct channel {
channel_dir_e queue_dir;
queue_t* msgs;

pthread_mutex_t m;
pthread_cond_t c;

};

Figure 3.2: Channel data structure definition in C.

Section 3.1.1, shifts are currently not needed in CC0 because the compiler can the infer the direction

of every action. Therefore, the channel data structure only maintains the direction of the message

queue. A mutex is necessary to protect channel state, and the condition variable is used by receivers

to wait on messages to arrive or the queue to change directions.

3.2.1 Interface

The generated code calls into the runtime for all message passing and process manipulation. The

compiler-runtime interface is four main functions and is consistent across all of our runtime imple-

mentations.

• cc0_spawn creates a new concurrent process and the channel along which it will provide,

returning a reference to that channel to the caller (client). cc0_spawn takes in the function

and arguments for the new provider process as well as the type width and initial direction

of the channel as inferred by the compiler, allowing the runtime to create a channel with a

bounded ring-buffer when possible.

• cc0_send sends a given message over a given channel, additionally taking in the message’s

type and the inferred direction. cc0_send locks the channel, enqueues the message with its

type, sets the direction of the queue, and unlocks. A receiver may be waiting for the message,

so the sender must wake up the potential receiver by signaling the condition variable.

24



Runtime Threading Synchronization
concur2 1∶1 pthread locks and condition variables
concur3 1∶1 C11 lockless primitives
concur5 M ∶N Coroutine scheduling and pthread locks
concur6 M ∶1 Coroutine scheduling
go0 Go M ∶N Naive use of Go channels
go2 Go M ∶N Locks and condition variable design from concur2

Figure 3.3: CC0 runtime implementations.

• cc0_recv receives a message over a given channel, taking in the message’s expected type and

the inferred direction. cc0_recv locks the channel and attempts to receive the message. If

the buffer is empty or still flowing in the other direction, then the caller will give up the lock

and wait on the condition variable for the sender. If the message is a forward, the receiver

handles it, installing the new channel; see Section 3.1.3 for details. cc0_recv asserts that the

received message is of the expected type, panicking if it does not match and is not a forward.

• cc0_forward takes in the two channels involved in the forward and the inferred direction of

communication. As discussed in Section 2.5, a forward message is sent in the inferred direction

containing a reference to the channel in the other direction. cc0_forward sends this message

using the regular message passing functionality of the runtime and then terminates the calling

process.

The close and wait operations are implemented by sending a receiving a message of special

DONE type. In the C implementations, wait (a cc0_recv of the DONE type) will deallocate channel

and process resources upon receiving the close. Go is garbage collected, so this is unnecessary in

those implementations.

3.2.2 C Implementations

Figure 3.3 briefly lists the differences in our runtime implementations, specifically the different

threading models and synchronization strategies.

concur2 was our first functional runtime for CC0, and largely determined the runtime-compiler

interface. The pthread library enables concurrency and parallelism on multi-core machines, and
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it also provides mutexes and condition variables. CC0 processes map 1-to-1 onto pthreads which

typically map 1-to-1 onto system threads: spawning essentially becomes pthread_create, and wait

becomes pthread_join. Channels are protected by a mutex and condition variable, so sending,

receiving, and forwarding all require a channel lock.

concur3 is a variation of concur2 that uses C11 lockless primitives. Threading is still provided

by pthread, but channels are not locked. Processes are never blocked in this implementations

(there are no condition variables to wait on), instead they use atomic operations to repeatedly poll

if queue contains messages or is in the correct direction.

Because CC0 encourages highly concurrent programming, most programs spawn many pro-

cesses. concur5 represents an attempt reduce the runtime overhead associated with process man-

agement by using an M ∶N threading model, where M cooperatively scheduled coroutines are mul-

tiplexed on top of N system threads. The runtime only spawns as many system threads (using

pthread) as there are CPU cores, so M is far greater than N , diminishing the overhead associ-

ated with rapidly creating tens of thousands of processes. For concur5, we created our own M ∶N

threading solution, and we reimplemented the necessary synchronization primitives (mutexes and

condition variables) as well.

However, creating an efficient M ∶N scheduler proved difficult (see Section 4.1), so the concur6

runtime is a version of concur5 that maps all of processes to a single system thread. This vastly

simplified scheduling and synchronization, and it is worth discussing in its own right. While sim-

pler and ultimately faster than concur5, the cost of concur6 was the loss of parallelism, one of

Concurrent C0’s primary goals.

3.2.3 Go Implementations

The performance of the single-threaded concur6 runtime demonstrated that lightweight threading

was indeed an effective way to implement Concurrent C0. Instead of further pursuing a state-of-the-

art M ∶N threading system, we retargeted the CC0 compiler to Go. Go is imperative programming

language with a lightweight threading model that provides concurrency and efficient parallelism

[9]. Go also features message passing over channels, which provided both a tool to implement
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Concurrent C0 and something to compare our more specialized implementation against.

The go2 runtime is nearly a direct port of the concur2 runtime, but instead of spawning pro-

cesses with pthread_create, it uses the go command that spawns a new goroutine, the unit of

concurrent execution in Go. Because each CC0 processes is mapped to a goroutine, this imple-

mentation benefits from Go’s high performance M ∶N scheduler. Like concur2, go2 uses mutexes

and condition variables for synchronization; it does not use the channels Go provides by default.

Section 4.2 compares the performance of Go’s default channels and CC0’s channels implemented

in Go.
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Chapter 4

Experimental Comparison and

Analysis

The language based optimizations detailed in Chapter 3 allow our implementations to make tangible

performance improvements over other message passing techniques. We analyze the performance of

our C runtimes in Section 4.1 which demonstrates the effectiveness (or lack thereof) of the different

threading models and synchronization techniques in those implementations. In Section 4.2, we

compare our highest performing runtime, go2, against a specially created runtime that mimics how

message passing is typically done in Go.

To benchmark Concurrent C0, we created a benchmarking suite (Figure 4.1) consisting of many

highly concurrent data structures, like the queue in Figure A.1. Most of the work done in these

tests is communication, highlighting the efficiency of our message passing runtimes. All benchmarks

were run on a 2015 MacBook Pro with an Intel Core i7-4870HQ CPU with 4 cores at 2.50GHz.

4.1 C Implementation Analysis

The benchmarking results for the C runtimes (Figure 4.2) are limited by the poor performance of

concur3 and concur5. Note that the plot uses a log scale; concur5 performs orders of magnitude

worse than other runtimes in several cases. Due to the long running times, some liberties were
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bitstring1.c1 w/ external choice
bitstring3.c1 w/ internal choice
bst1.c1 BST reduce operation
insert-sort.c1 insertion sort using list
mergesort1.c1 w/ Fibonacci trees
mergesort3.c1 w/ binary trees
mergesort4.c1 w/ binary trees, seq. merge
odd-even-sort1.c1 odd/even sort, v1
odd-even-sort4.c1 odd/even sort, v4
odd-even-sort6.c1 odd/even sort, v6

parfib.c1 parallel naive Fibonacci
primes.c1 prime sieve (sequential)
queue-notail.c1 queues without tailcalls
queue.c1 queues written naturally
reduce.c1 reduce/scan parallel seqs
seg.c1 list segments
sieve-eager.c1 eager prime sieve
sieve-lazy.c1 lazy prime sieve
stack.c1 a simple stack

Figure 4.1: A short explanation of the tests in the CC0 benchmarking suite. The tests and bench-
mark results can be found at http://maxwillsey.com/assets/cc0-thesis-benchmarks.tgz

Figure 4.2: C runtime benchmarks on a log scale. Note that only one sample was taken, and some
results omitted completely, because of the poor performance of concur5.
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taken with benchmarking the C runtimes: the parameters of the tests were tweaked to make them

shorter, only one sample was taken, and concur5’s results for bitstring1.c1, queue-notail.c1,

and queue-tail.c1 were omitted for not terminating in a reasonable amount of time. The more

“interesting” runtimes from a performance perspective, concur6 and the Go runtimes, are given a

more rigorous analysis in Section 4.2.

Comparing concur2 and concur3 shows that the lockless approach yielded mixed results. In

some cases with high parallelism, where most processes are runnable all the time (like queue.c1),

the lockless approach saw considerable improvement. However, in cases where many threads are

blocked, the spinning associated with the lockless synchronization led to significant regressions.

In primes.c1, where only one thread is runnable at any time, concur3 regressed almost two

orders of magnitude from concur2. These results led us to abandon the lockless strategy in future

implementations.

The performance of concur6 highlights how efficient lightweight threading is as an implemen-

tation for Concurrent C0. The disparity between concur5 and concur6, which are largely similar,

demonstrates the challenges to efficiently implementing M ∶N threading. concur6 implements the

M ∶1 model, forgoing the potential parallelism of 4 cores in favor of a much simpler scheduling and

synchronization strategy, because all the processes are running on one system thread. We spec-

ulate that the dramatic slowdown of concur5 can be attributed to poor scheduling, specifically

extremely high contention on the scheduler queue. By eliminating that contention, the admit-

tedly simple concur6 runtime significantly outperforms every other C runtime, even by orders of

magnitude in many cases.

4.2 Go Implementation Analysis

To compare Concurrent C0 to more typical message passing techniques, we created go0, a naive,

proof-of-concept implementation that uses Go’s built-in channels to implement CC0 channels. As

CC0 channels provide safe bidirectional communication, two Go channels must be used to imple-

ment a CC0 channel without additional synchronization. go0 serves as a stand-in modeling how

message passing is done in other languages (with two large channels intended for one-way commu-
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Figure 4.3: Go runtime benchmarks with concur6. The bars are drawn at the median of 20
samples, and the overlaid boxplots additionally display the maximum, minimum, 1st and 3rd quar-
tiles, and outliers of the results. Result data can be found at http://maxwillsey.com/assets/
cc0-thesis-benchmarks.tgz

nication), but it conforms to the same interface as our other implementations so we can run the

same tests against it.

Figure 4.3 shows the results of the Go runtimes go0 and go2 benchmarked with concur6 for

comparison. Recall that go0 closely models conventional message passing (using Go channels), and

go2 leverages all of our language based optimizations: type width for buffer bounding, using only

one buffer, and automatically synchronizing the direction of communication. Both go0 and go2 use

the same threading model, so comparing them demonstrates the effectiveness of our implementation

techniques. Compared to the naive implementation, our optimized version ran 1.38× faster on

average1.

These results also demonstrate that our implementation takes advantage of parallelism when it

exists. concur6 and go2 share the same language based optimizations, but concur6 uses a custom

M ∶1 threading model and go2 uses Go’s M ∶N threading model. In test cases with high parallelism

like queue-notail.c1 and parfib.c1, where many processes are runnable most of the time, we

see between 2× and 4× speed up from the sequential concur6 to the parallel go2.
1 Average calculated as geometric mean of the ratios of the median benchmark times
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We suspect that the speed up would be even more dramatic if the Go compiler optimized

tail recursion. Concurrent C0 encourages a tail recursive style of programming; see Section 2.3.1.

Because Go does not optimize tail calls, their extensive use causes the stack to grow rapidly. Go

starts goroutines (which are used to implement CC0 processes) with a very small stack, copying

the stack to another location when it needs to grow. Profiling results suggest that up to half of the

running time of some of our test cases is spent by Go copying stacks.

The queue-notail.c1 test case is the same as queue.c1, except that it is written with loops

as opposed to tail recursion. The more than 2× difference in both Go runtimes’ performance on

these tests indicates that Go’s lack of tail call optimization is a serious hindrance. Other test cases

like primes.c1 rely heavily on mutually recursive tail calls, so even though the negative impact is

similar, no -notail version was written for those cases.
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Chapter 5

Conclusions and Future Work

Concurrent C0 makes writing highly concurrent programs using message passing easier, safer, and

more efficient than other languages. A concise, C-like syntax allows programmers to use a familiar

imperative style to safely create and manipulate concurrent processes. The forwarding operation

and linear channel variable semantics enable safe modifications to the process tree, even outside

of fork/join style operations. Session types ensure that message passing adheres to the expected

protocols, and they also give insight into the overall communication structure of the program.

Our implementations exploit this knowledge to make optimizations that shrink some buffers and

eliminate others, increasing performance while still providing bidirectional communication.

The knowledge given by session types could also be used to inform scheduling decisions at

runtime. The structure of relationships between communicating process could enable optimizations

like co-scheduling providers and clients to increase parallel performance. The same information

might also assist the runtime in deciding on granularity; the structure of the process tree could

help save the overhead of spawning new concurrent processes in some situations, just running them

inline instead.

Session typing and linearity make communication of values safe, and Concurrent C0 (from C0)

is memory safe for sequential programs, but the combination of shared memory and concurrency

leads to race conditions. Presently, our implementations allow sending and receiving pointers and

arrays between processes, but there is no attempt to enforce the safety of accesses and writes. Given
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that channels already have linear semantics, CC0 could benefit from a linear or affine treatment

of shared memory like that of Rust1, which would disallow multiple CC0 processes manipulating

shared state.

Session types are traditionally discussed in the setting of distributed computing, so a distributed

implementation of Concurrent C0 could carry some of the contributions of this work into that space.

Specifically, the concept of forwarding as a message would be even more beneficial than it was in

the shared memory setting, as synchronization is even more challenging on the distributed scale.

Message passing is already common in distributed systems, so our forwarding interpretation could

easily be implemented in existing systems.

1https://doc.rust-lang.org/book/ownership.html
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Appendix A

Examples
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1 // external choice for request
2 choice queue {
3 <?int; ?choice queue> Enq;
4 <!choice queue_elem> Deq;
5 };
6

7 // internal choice for response
8 choice queue_elem {
9 <!int; ?choice queue> Some;

10 < > None;
11 };
12

13 typedef <?choice queue> queue;
14

15 // provider holds element x and
16 // points to rest of the queue $r
17 queue $q elem (int x, queue $r) {
18 switch ($q) {
19 case Enq:
20 int y = recv($q);
21 $r.Enq; send($r, y);
22 $q = elem(x, $r);
23 case Deq:
24 $q.Some; send($q, x);
25 $q = $r;
26 }
27 }

29 // provider for end of queue
30 queue $q empty () {
31 switch ($q) {
32 case Enq:
33 int y = recv($q);
34 queue $e = empty();
35 $q = elem(y, $e);
36 case Deq:
37 $q.None;
38 close($q);
39 }
40 }
41

42 void dealloc (queue $q) {
43 $q.Deq; switch($q) {
44 case Some:
45 recv($q);
46 dealloc($q);
47 return;
48 case None:
49 wait($q);
50 return;
51 }
52 }
53

54 int main () {
55 queue $q = empty();
56 $q.Enq; send($q, 1);
57 $q.Enq; send($q, 2);
58 dealloc($q);
59 return 0;
60 }

Figure A.1: queue.c1, a queue implementation where each element is a concurrent process.
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$q
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ÐÐÐÐÐÐ→

1 Enq
→

(a) P enqueues 1 [line 56].

P

main()
Q

elem(1,$r)
R

empty()
$q

→ →

$r
→ →

(b) Q gets the enqueue, spawning a new empty() process and channel [line 34–35].

P

main()
Q

elem(1,$r)
R

empty()
$q

←

ÐÐÐ→

Deq
→

$r
→

ÐÐÐÐÐÐ→

2 Enq
→

(c) P enqueues 2 [line 57] which Q passes to the back of the queue [line 21]. P sends a
dequeue request and waits for the result [line 43].

P

main()
Q R

empty()
$q

←

←ÐÐÐÐÐÐÐ

Some 1
→

$r
→

ÐÐÐÐÐÐ→

2 Enq
→

(d) Q responds to the dequeue [line 24] and is about to forward [line 25].

P

main()
��SSQ R

empty()
$q

←

←ÐÐÐÐÐÐÐ

Some 1

$r

ÐÐÐÐÐÐÐÐÐÐÐÐÐ→

fwd: $q 2 Enq
→

(e) Q forwards $q = $r [line 25] by sending a forward message in the direction of commu-
nication according to the session type, not the state of the channel buffers. Q terminates,
but $r must persist because it still has messages. Simply concatenating the buffer here will
not work because they have different directions.

P

main()
R

elem(2,$s)
S

empty()
$q

→ →

$s
→ →

(f) R finally gets the enqueue, spawning a new empty() process and channel [line 34–35].
When R receives the forward, it deallocates $r (which is now safe because $r is empty) and
will now use $q instead.

Figure A.2: An illustration using queue.c1 (Figure A.1) demonstrating how treating
forwarding as a message resolves communication direction issues. The arrows above
the channel contents indicate the actual flow of messages along the channel. The
small arrows above channel endpoints indicate the direction of that process’ next
action along that channel according the session type.
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1 choice list {
2 <!int; !choice list> Cons;
3 <> Nil;
4 };
5

6 // a Lisp-style list
7 typedef <!choice list> list;
8

9 // first requests the list tail
10 // then behaves like the whole list
11 typedef <?list; list> seg;
12

13 list $c nil() {
14 $c.Nil;
15 close($c);
16 }
17

18 list $c cons(int x, list $d) {
19 $c.Cons;
20 send($c, x);
21 $c = $d;
22 }
23

24 seg $c empty() {
25 list $tail = recv($c);
26 $c = $tail;
27 }
28

29 seg $c concat(seg $d, seg $e) {
30 list $tail = recv($c);
31 send($e, $tail);
32 send($d, $e);
33 $c = $d;
34 }
35

36 seg $c prepend(int x, seg $e) {
37 list $tail = recv($c);
38 send($e, $tail);
39 $c = cons(x, $e);
40 }

42 seg $c append(seg $d, int x) {
43 list $tail = recv($c);
44 list $e = cons(x, $tail);
45 send($d, $e);
46 $c = $d;
47 }
48

49 int read_elements(seg $d) {
50 list $nil = nil();
51 send($d, $nil);
52 int sum = 0;
53 while (true) {
54 switch ($d) {
55 case Nil:
56 wait($d);
57 return sum;
58 case Cons:
59 sum += recv($d);
60 break;
61 }
62 }
63 }
64

65 int main() {
66 int n = 500;
67 seg $c = empty();
68 seg $d = empty();
69 for (int i = 0; i < n; i++) {
70 $c = append($c, i);
71 $d = prepend(n-i-1, $d);
72 }
73 seg $e = concat($c, $d);
74 int sum = read_elements($e);
75 assert(sum == n*(n-1));
76

77 return 0;
78 }

Figure A.3: seg.c1, a list implementation supporting prepending, appending, and concatenation
where each element is a concurrent process. The nil and cons functions provide the list type,
an internal choice representing a singly-linked list in the style of Lisp. The seg type is higher-level
abstraction that first receives a list then behaves like a list.
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