Design and Implementation of Concurrent CO

Max Willsey
Advisor: Frank Pfenning

Carnegie Mellon University
School of Computer Science
Senior Honors Thesis

May 4, 2016

Max Willsey (CMU) Concurrent CO May 4, 2016

1/6

CCO0 in 1 Sentence

Concurrent CO uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

Max Willsey (CMU) Concurrent CO May 4, 2016 2/6

CCO0 in 1 Sentence

Concurrent CO uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

typedef <7int; !bool;> protocol;

Max Willsey (CMU) Concurrent CO May 4, 2016 2/6

CCO0 in 1 Sentence

Concurrent CO uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

typedef <7int; !bool;> protocol;

Provider:
protocol $c even() {
int x = recv($c);
send($c, x%2==0);

close($c);
}

Max Willsey (CMU) Concurrent CO May 4, 2016 2/6

CCO0 in 1 Sentence

Concurrent CO uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

typedef <7int; !bool;> protocol;

Provider: Client:
protocol $c even() { protocol $c = even();
int x = recv($c); send($c, 4);
send($c, x%h2==0); assert(recv($c));
close($c); wait($c);
}
Max Willsey (CMU) Concurrent CO May 4, 2016

2/6

CCO0 in 1 Sentence

Concurrent CO uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

1.38x faster

9

8

7

6

s

g

Ea

3

2

1

0

bitsy, bus, bsty ., Msers Merg, Merg, Mer g, Odg.e Parfy, Prim, que que dye, Seg, Sieye_ Sleye, Stag
g1 g 93,0y TSty o2 5oy geso,rjcfes‘mqevenxo,;"enso,:“ s%:fl s ¢, M. ue_q oy et oot % £z

<
Max Willsey (CMU) Concurrent CO May 4, 2016

2/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

P 4« Q

int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

P 4] Q
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

p 4] >0
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);

Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

(—
p IR
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

(—
P «{4] >
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

(—
P | 4%2==0 >
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

—>
P H true >|
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

—>
P true '—) Q
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
Max Willsey (CMU) Concurrent CO May 4, 2016

3/6

Contributions
Type Width

typedef <7choice request> atm;
choice request {
<7amount; !balance; atm> Deposit;
<7amount; !choice result> Withdraw;
};
choice result {
<!payment; atm> Success;
<atm> Overdraft;

};

Max Willsey (CMU) Concurrent CO May 4, 2016

4/6

Contributions
Type Width

typedef <7choice request> atm;
choice request {
<7amount; !balance; atm> Deposit;
<7amount; !choice result> Withdraw;
3
choice result {
<!payment; atm> Success;

<atm> Overdraft;
+;
i
(TTTTITITII T IIIIITITIT]
y,
>
Max Willsey (CMU) Concurrent CO May 4, 2016

4/6

Contributions
Type Width

typedef <7choice request> atm;
choice request {
<7amount; !balance; atm> Deposit;
<7amount; !choice result> Withdraw;
3
choice result {
<!payment; atm> Success;

<atm> Overdraft;
+;
< y,
< >
Max Willsey (CMU) Concurrent CO May 4, 2016

4/6

Contributions
Type Width

W1thdraw DePOSIt

Y
Success

Y
Ichoice result |———> | !payment

Max Willsey (CMU) Concurrent CO May 4, 2016 4/6

Contributions
Type Width

Dep051t

W1thdraw

&7’&&

&

- Success
Ichoice result |———> | !payment

. S—.

1]

Max Willsey (CMU) Concurrent CO May 4, 2016 4/6

Contributions

Forwarding

— > — >
$c $d nil

Max Willsey (CMU)

Concurrent CO

Contributions

Forwarding

P oQ IEnq:2|—oR

$c $d nil

Max Willsey (CMU) Concurrent CO

Contributions

Forwarding

—>
P Deq o Q W’—OR

$c $d nil

Max Willsey (CMU) Concurrent CO

Contributions

Forwarding

<« —>
p—{Some:1}—o0 Q —{Ena:2}—o R
$c $d nil

Max Willsey (CMU) Concurrent CO

Contributions

Forwarding

<« —>
p—{Some:t}—o —fscfEnaiz}or
$c $d nil

Max Willsey (CMU) Concurrent CO

Contributions

Forwarding

<« —>
p—{Someii}— —[5c]
$c $d

Max Willsey (CMU) Concurrent CO

Contributions

Forwarding

$c

Max Willsey (CMU)

Concurrent CO

Takeaways

Session types give valuable insight into the structure of communication
that’s useful for safety and efficient implementation.

Max Willsey (CMU) Concurrent CO May 4, 2016 6/6

Takeaways

Session types give valuable insight into the structure of communication
that’s useful for safety and efficient implementation.

Max Willsey (CMU) Concurrent CO May 4, 2016 6/6

Takeaways

Session types give valuable insight into the structure of communication
that’s useful for safety and efficient implementation.

Questions?

Max Willsey (CMU) Concurrent CO May 4, 2016 6/6

