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CCO0 in 1 Sentence

Concurrent CO uses session types to make concurrent message passing
safer and more efficient than in other programming languages.
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typedef <7int; !bool;> protocol;

Provider:
protocol $c even() {
int x = recv($c);
send($c, x%2==0);

close($c);
}
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CCO0 in 1 Sentence

Concurrent CO uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

typedef <7int; !bool;> protocol;

Provider: Client:
protocol $c even() { protocol $c = even();
int x = recv($c); send($c, 4);
send($c, x%h2==0); assert(recv($c));
close($c); wait($c);
}
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CCO0 in 1 Sentence

Concurrent CO uses session types to make concurrent message passing
safer and more efficient than in other programming languages.
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Contributions

Synchronization Points

Communication in CCO is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q
int x = recv($c); send($c, 4);
send($c, x%2==0); recv($c);
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Contributions
Type Width

typedef <7choice request> atm;
choice request {
<7amount; !balance; atm> Deposit;
<7amount; !choice result> Withdraw;
};
choice result {
<!payment; atm> Success;
<atm> Overdraft;

};
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Contributions

Forwarding
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Takeaways

Session types give valuable insight into the structure of communication
that’s useful for safety and efficient implementation.
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Questions?
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