
Design and Implementation of Concurrent C0

Max Willsey
Advisor: Frank Pfenning

Carnegie Mellon University
School of Computer Science

Senior Honors Thesis

May 4, 2016

Max Willsey (CMU) Concurrent C0 May 4, 2016 1 / 6

CC0 in 1 Sentence

Concurrent C0 uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

1.38× faster

Max Willsey (CMU) Concurrent C0 May 4, 2016 2 / 6

CC0 in 1 Sentence

Concurrent C0 uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

typedef <?int; !bool;> protocol;

1.38× faster

Max Willsey (CMU) Concurrent C0 May 4, 2016 2 / 6

CC0 in 1 Sentence

Concurrent C0 uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

typedef <?int; !bool;> protocol;

Provider:

protocol $c even() {

int x = recv($c);

send($c, x%2==0);

close($c);

}

Client:

protocol $c = even();

send($c, 4);

assert(recv($c));

wait($c);

1.38× faster

Max Willsey (CMU) Concurrent C0 May 4, 2016 2 / 6

CC0 in 1 Sentence

Concurrent C0 uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

typedef <?int; !bool;> protocol;

Provider:

protocol $c even() {

int x = recv($c);

send($c, x%2==0);

close($c);

}

Client:

protocol $c = even();

send($c, 4);

assert(recv($c));

wait($c);

1.38× faster

Max Willsey (CMU) Concurrent C0 May 4, 2016 2 / 6

CC0 in 1 Sentence

Concurrent C0 uses session types to make concurrent message passing
safer and more efficient than in other programming languages.

1.38× faster

Max Willsey (CMU) Concurrent C0 May 4, 2016 2 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Synchronization Points

Communication in CC0 is asynchronous, but we know the direction of
communication, so we only need one buffer.

P Q444444%2==0true true

int x = recv($c);

send($c, x%2==0);

send($c, 4);

recv($c);

Max Willsey (CMU) Concurrent C0 May 4, 2016 3 / 6

Contributions
Type Width

typedef <?choice request> atm;

choice request {

<?amount; !balance; atm> Deposit;

<?amount; !choice result> Withdraw;

};

choice result {

<!payment; atm> Success;

<atm> Overdraft;

};

Max Willsey (CMU) Concurrent C0 May 4, 2016 4 / 6

Contributions
Type Width

typedef <?choice request> atm;

choice request {

<?amount; !balance; atm> Deposit;

<?amount; !choice result> Withdraw;

};

choice result {

<!payment; atm> Success;

<atm> Overdraft;

};

Max Willsey (CMU) Concurrent C0 May 4, 2016 4 / 6

Contributions
Type Width

typedef <?choice request> atm;

choice request {

<?amount; !balance; atm> Deposit;

<?amount; !choice result> Withdraw;

};

choice result {

<!payment; atm> Success;

<atm> Overdraft;

};

Max Willsey (CMU) Concurrent C0 May 4, 2016 4 / 6

Contributions
Type Width

?choice atm ?amount?amount

!choice result !payment !balance

DepositWithdraw

Success

Ov
er
dr
af
t

Max Willsey (CMU) Concurrent C0 May 4, 2016 4 / 6

Contributions
Type Width

?choice atm ?amount?amount

!choice result !payment !balance

DepositWithdraw

Success

Ov
er
dr
af
t

Max Willsey (CMU) Concurrent C0 May 4, 2016 4 / 6

Contributions
Forwarding

P Q RSome:1

$c

Q

1 nil2

Enq:2DeqSome:1

$c

Enq:2$c Enq:2$c

$d

Max Willsey (CMU) Concurrent C0 May 4, 2016 5 / 6

Contributions
Forwarding

P Q RSome:1

$c

Q

1 nil2

Enq:2DeqSome:1

$c

Enq:2$c Enq:2$c

$d

Max Willsey (CMU) Concurrent C0 May 4, 2016 5 / 6

Contributions
Forwarding

P Q RSome:1

$c

Q

1 nil2

Enq:2DeqSome:1

$c

Enq:2$c Enq:2$c

$d

Max Willsey (CMU) Concurrent C0 May 4, 2016 5 / 6

Contributions
Forwarding

P Q RSome:1

$c

Q

1 nil2

Enq:2DeqSome:1

$c

Enq:2$c Enq:2$c

$d

Max Willsey (CMU) Concurrent C0 May 4, 2016 5 / 6

Contributions
Forwarding

P Q RSome:1

$c

Q

1 nil2

Enq:2DeqSome:1

$c

Enq:2$c Enq:2$c

$d

Max Willsey (CMU) Concurrent C0 May 4, 2016 5 / 6

Contributions
Forwarding

P Q RSome:1

$c

Q

1 nil2

Enq:2DeqSome:1

$c

Enq:2$c Enq:2$c

$d

Max Willsey (CMU) Concurrent C0 May 4, 2016 5 / 6

Contributions
Forwarding

P Q RSome:1

$c

Q

1 nil2

Enq:2DeqSome:1

$c

Enq:2$c Enq:2$c

$d

Max Willsey (CMU) Concurrent C0 May 4, 2016 5 / 6

Takeaways

Session types give valuable insight into the structure of communication
that’s useful for safety and efficient implementation.

Questions?

Max Willsey (CMU) Concurrent C0 May 4, 2016 6 / 6

Takeaways

Session types give valuable insight into the structure of communication
that’s useful for safety and efficient implementation.

Questions?

Max Willsey (CMU) Concurrent C0 May 4, 2016 6 / 6

Takeaways

Session types give valuable insight into the structure of communication
that’s useful for safety and efficient implementation.

Questions?

Max Willsey (CMU) Concurrent C0 May 4, 2016 6 / 6

