
LATEX TikZposter

Design and Implementation of Concurrent C0
Max Willsey Advisor: Frank Pfenning

Design and Implementation of Concurrent C0
Max Willsey Advisor: Frank Pfenning

Concurrent C0

Concurrent C0 (CC0) is an extension to the C0 programming
language that supports safe concurrent message passing using
session types. Session typing allows us to encode the type of a
communication protocol: sequences of types represent how the
type changes as the program executes. Each type in a sequence is
designated as sending (!) or receiving (?), encoding the direction of
communication. Communication occurs between pairs of processes
in which one is called the provider and the other is the client.
Because both ends of the channel communicate using the same
protocol, it suffices to just give one type; we type the session from
the provider’s point of view.

The fundamental unit of concurrency in Concurrent C0 is the process.
Processes are spawned by functions that return a channel variable
(denoted with the $ sign). When a spawning function is called, a
new channel is returned immediately to the caller, who is the client.
A new process is then created and executes the function concurrently,
providing from the other end of the channel. The following code
sample implements queues in CC0 with fine grained concurrency,
where each element is contained in its own process:

// external choice for request
choice queue {

<?int; ?choice queue> Enq;
<!choice queue_elem> Deq;

};

// internal choice for response
choice queue_elem {

<!int; ?choice queue> Some;
< > None;

};

typedef <?choice queue> queue;

// provider holds element x and
// points to rest of the queue $r
queue $q elem (int x, queue $r) {

switch ($q) {
case Enq:

int y = recv($q);
$r.Enq; send($r, y);
$q = elem(x, $r);

case Deq:
$q.Some; send($q, x);
$q = $r;

}
}

// provider for end of queue
queue $q empty () {

switch ($q) {
case Enq:

int y = recv($q);
queue $e = empty();
$q = elem(y, $e);

case Deq:
$q.None;
close($q);

}
}

void dealloc (queue $q) {
$q.Deq; switch($q) {

case Some:
recv($q);
dealloc($q);
return;

case None:
wait($q);
return;

}
}

int main () {
queue $q = empty();
$q.Enq; send($q, 1);
$q.Enq; send($q, 2);
dealloc($q);
return 0;

}

Forwarding

Forwarding allows a process to terminate, letting the provider and client communicate directly.
The middle process Q combines two channels of the same session type by executing the
forward $c = $d, so the two endpoints can communicate without the process in the middle.

P Q R
$c $d

P R
$c

At a very high level, forwarding can be
thought of as setting a channel equal to
another channel, but its semantics and
implementation are more complicated. How
do we choose $c to persist? What happened
to the messages in $d?

We implement forwarding as a special kind of message, deferring the execution until the
processes agree on the session types and one of channels involved is empty. We use the session
typing system to send a special forward message in the direction of communication according
to the forwarding process. Q would send a message along $d containing its reference to $c
before terminating. When R receives the message—and we know it will be receiving because
Q sent the message in the direction of communication—$d must be empty because because
Q terminated after sending the forward message. R will then destroy the empty channel
($d) and change its own channel reference to the one from the forward message ($c). This
maintains the transparency of forwarding: the session type of $d from R’s perspective when
it receives the forward is the same as the type of $c from Q’s perpective when it executed the
forward, so communication is still safe.

Optimizations

Concurrent C0’s typing system not only ensures the safety of concurrent code, but it also
allows for an efficient implementation. Session typing directly enables our implementation to
use fewer, smaller buffers than other message passing techniques.

Session types dictate that communication is only
in one direction at a time, and in certain cases
only so many values can be buffered at a time. For
example, the type <!bool; ?int;> could only
possibly buffer one value at a time, because the int
must be sent from the client, which can only occur
once the client has received the previous the bool.
This quantity is called the width of the type. The
CC0 compiler infers widths, allowing the runtime
to use small, fixed length circular buffer as queues
and not have to worry about ever resizing.

Session types can be viewed as a directed graph
in which a walk represents a possible sequence of
sent or received types. We know that the buffer
will only contain messages going in one way at a
time, so there are actually two graphs, one sending
(red) and one (green), connected by the dashed gray
edges representing synchronization points where we
know the buffer will be empty. Thus, the width of
the type is the longest walk in either the red or
green subgraph. The ATM protocol shown to the
right has a width of 2.

typedef amount int;
typedef balance int;
typedef payment int;

typedef <?choice atm> atm;

choice atm {
<?amount; !balance; atm> Deposit;
<?amount; !choice result; atm> Withdraw;

};

choice result {
<!payment; atm> Success;
<atm> Overdraft;

};

?choice atm

?amount

?amount !choice result

!payment

!balance

De
po

si
t

Wi
th

dr
aw

Success

Overdraft

Results

Median benchmark times of the go0 and go2 runtimes over 20 samples.

To benchmark Concurrent C0, we created go0, a naive, proof-
of-concept implementation that uses Go’s built-in channels
to implement CC0 channels. As CC0 channels provide safe
bidirectional communication, two Go channels must be used
to implement a CC0 channel without additional synchroniza-
tion. go0 serves as a stand-in modeling how message passing is
done in other languages (with two large channels intended for
one-way communication), but it conforms to the same interface
as our other implementations so we can run the same tests against it.

We compare go0 against go2, a Go implementation which uses the
full suite of language based optimizations. Our benchmarking suite
consists of many highly concurrent data structures, like the queue
on the left. Most of the work done in these tests is communica-
tion, so as to highlight the efficiency of our message passing runtimes.

The go0 vs. go2 benchmark demonstrates the effectiveness of our
implementation techniques. Compared to the naive implementation,
our optimized version ran 1.38× faster on average. We suspect
that the speed up would be even more dramatic if the Go compiler
optimized tail calls, because CC0 encourages a tail recursive style
of programming. The queue-notail.c1 test case is the same
as queue.c1, except that it is written with loops as opposed to
tail recursion. The more than 2× difference in both Go runtimes’
performance indicates that Go’s lack of optimization in this case is
a serious hindrance. Other test cases like primes.c1 rely heavily
on mutually recursive tail calls, so even though the negative impact
is similar, no -notail version was written for those cases.

References

[1] Rob Arnold. “C0, an Imperative Programming Language for Novice
Computer Scientists”. Available as Technical Report CMU-CS-10-145.
M.S. Thesis. Department of Computer Science, Carnegie Mellon Uni-
versity, Dec. 2010.

[2] Hans-J. Boehm. A garbage collector for C and C. url: http://www.
hboehm.info/gc.

[3] Luís Caires and Frank Pfenning. “Session Types as Intuitionistic
Linear Propositions”. In: Proceedings of the 21st International Confer-
ence on Concurrency Theory (CONCUR 2010). Paris, France: Springer
LNCS 6269, Aug. 2010, pp. 222–236.

[4] Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. “Sessions and
session types: An overview”. In: Web Services and Formal Methods.
Springer, 2010, pp. 1–28.

[5] Dennis Griffith. “Polarized Substructural Session Types”. In prepa-
ration. PhD thesis. University of Illinois at Urbana-Champaign, Apr.
2016.

[6] Kohei Honda. “Types for Dyadic Interaction”. In: 4th International
Conference on Concurrency Theory. CONCUR’93. Springer LNCS 715,
1993, pp. 509–523.

[7] Frank Pfenning. C0 Language. url: http://c0.typesafety.net.

[8] Frank Pfenning and Dennis Griffith. “Polarized Substructural Ses-
sion Types”. In: Proceedings of the 18th International Conference on
Foundations of Software Science and Computation Structures (FoS-
SaCS 2015). Ed. by A. Pitts. Invited talk. To appear. London, England:
Springer LNCS, Apr. 2015.

[9] The Go Programming Language. url: https://golang.org.

[10] Bernardo Toninho. “A Logical Foundation for Session-based Con-
current Computation”. Available as Technical Report CMU-CS-15-109.
Ph.D. Thesis. School of Computer Science, Carnegie Mellon University,
May 2015.

http://www.hboehm.info/gc
http://www.hboehm.info/gc
http://c0.typesafety.net
https://golang.org

