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Abstract— Moore’s Law may be slowing, but our ability to
manipulate molecules is improving faster than ever. DNA could
provide alternative substrates for computing and storage as
existing ones approach physical limits. In this paper, we explore
the implications of this trend in computer architecture.

We present a computer systems prospective on molecular
processing and storage, positing a hybrid molecular-electronic
architecture that plays to the strengths of both domains. We
cover the design and implementation of all stages of the
pipeline: encoding, DNA synthesis, system integration with
digital microfluidics, DNA sequencing (including emerging
technologies like nanopores), and decoding. We first draw on
our experience designing a DNA-based archival storage system,
which includes the largest demonstration to date of DNA digital
data storage of over 3 billion nucleotides encoding over 400MB
of data. We then propose a more ambitious hybrid-electronic
design that uses a molecular form of near-data processing for
massive parallelism. We present a model that demonstrates the
feasibility of these systems in the near future.

We think the time is ripe to consider molecular storage seri-
ously and explore system designs and architectural implications.

I. INTRODUCTION

Exponentially growing data poses a significant challenge
to the landscape of current storage technologies. If we are
to store and make use of the world’s information, we need
fundamentally denser and cheaper storage technologies. We
believe going to the molecular level is inevitable, as also
observed by Zhirnov et al [1].

Synthetic DNA is an attractive storage medium for
many reasons: its theoretical information density of about
10" B/mm?® is 107 times denser than magnetic tape
ure 1), it can potentially last for thousands of years, and it
will never go obsolete since we will always be interested
in reading DNA for health purposes. The biotechnology
industry has developed the basic tools to manipulate DNA,
including writing and reading DNA, which can now be
leveraged and improved for digital data storage. Importantly,
there is rapid exponential progress in DNA reading and
writing, arguably surpassing Moore’s law [2] (though in
the analysis provided in this paper, we chose to model
sequencing and synthesis rates that are achievable today).
Given the current trends in data production and the rapid
progress of DNA manipulation technologies, we believe the
time is ripe to make DNA-based storage and computing
systems a reality.

In this paper we articulate a vision towards an end-to-end
system for archival and retrieval, discuss the challenges in
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Fig. 1: Comparing DNA with mainstream storage media.

building it, and consider additional applications once it is
built. The key challenge is scaling throughput and cost of
DNA synthesis and sequencing orders of magnitude beyond
the needs of the life sciences industry. Others challenges
include system integration, fluidics automation, reliable inter-
faces between electronics and wet system components, stable
preservation, and random access of data stored in molecular
form.

Molecular data storage creates opportunities for near-
data processing; for example, pattern matching and search
could be performed directly on the molecular representation.
Adleman [3] noted that DNA’s stable double-stranded struc-
ture comes with a simple computational primitive: matching
single-stranded molecules will stochastically “bump into
each other” in solution. Adleman used this property to com-
pute a solution to the Hamiltonian path problem, pioneering
the field of DNA computing. While this area of work has
advanced rapidly over the last two decades, the path to large-
scale systems remains unclear.

Motivated by progress in DNA data storage, we envision
a hybrid molecular-electronic architecture that combines
the strengths of molecular and conventional electronics.
This approach takes advantage of DNA as both a storage
medium and computing substrate. It promises to achieve
nearly unlimited bandwidth: data and processing units float
free in solution, so computation can diffuse through data
and effectively occur everywhere simultaneously. We call
this phenomenon near-molecule processing. This property
effectively breaks the fixed capacity/bandwidth ratio on
typical storage devices in traditional systems, making it
especially promising for data-intensive applications such as
content-based media search.

In the remainder of this paper, we provide background

in discuss hybrid molecular-electronic systems
in general in [Section IIIj and then present our work on



DNA data storage in detail in [Section IV] In [Section V|
we propose a new hybrid molecular-electronic system for
image similarity search and model its feasibility. Finally, we
conclude with a discussion of future technology trends that

impact the design space of these systems in [Section VI

II. BACKGROUND

DNA’s potential as a substrate for molecular computation
and storage has been the subject of research for over two
decades, dating back to Adleman’s exploration of combi-
natorial problems [3] and Baum’s proposal for a massive
DNA-based database with associative search capability [4].

A. DNA structure

DNA molecules are biopolymers consisting of a sequence
of nucleotides. Each nucleotide can have one of four bases:
adenine (A), cytosine (C), guanine (G), or thymine (T).
A single DNA molecule (also called an oligonucleotide or
oligo for short) consists of a sequence of bases, written
with initials, e.g., AGTATC. The direction is significant: as
normally written, the left end is called the 5’ (“five prime”)
end, and the right end is called the 3’ (“three prime”) end.

Two oligos can come together to form a double-stranded
duplex, where bases are paired with their complement: A with
T, and C with G. The two oligos in a duplex run in opposite
directions, therefore a sequence will be fully complementary
with its reverse complement. This is illustrated in
each base on the 5’ end of the upper strand is paired with a
complementary base on the 3’ end of the lower strand.

The process of duplex formation is called hybridization.
Two complementary strands suspended in solution will even-
tually form a stable structure that requires energy to break.
Fully complementary sequences will form the famous double
helix structure (Fig al).

Two sequences do not have to be fully complementary
to hybridize (Figure 2b). Partially hybridized structures are
less thermodynamically stable, and occur less frequently at
higher solution temperatures. Given two strands, the solution
temperature at which 50% of the strands have formed a
duplex at equilibrium is called the duplex’s melting temper-
ature. A higher melting temperature indicates a more stable
duplex. The number of unpaired bases is not necessarily
related to melting temperature [5]. For instance, changing
the mismatched A on the lower strand of |[Figure 2b| to a
mismatched G raises the melting temperature to 44.6°C,
despite the fact that the number of unpaired bases remains
the same. Melting temperature for a pair of sequences can be
calculated precisely by thermodynamic simulation software
such as NUPACK [6]. In addition to temperature, one can
also control hybridization via pH or ionic strength of the
solution.

B. DNA writing (synthesis) and reading (sequencing)

DNA synthesis is the process of making arbitrary DNA
molecules from a specification. One of the most estab-
lished methods is based on phosphoramidite chemistry due
to Caruthers [7]. The method uses protected” monomers
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Fig. 2: DNA molecules can form double-stranded duplexes
even when their sequences are not fully complementary, but
these structures are less stable and thus have lower melting
temperatures.

(individual nucleotides) to prevent the formation of a long
homopolymer chain. Removing the protecting group is done
with an acid solution. The synthesis cycles works by: (1)
incorporating a chosen nucleotide into an existing polymer;
(2) strengthening the bond via oxidation; (3) washing out
excess monomers; (4) deprotecting the last added base; (5)
repeat. DNA synthesis can be made very parallel via an
array-based control of either deposition of the next base or
localized removal of the protecting group.

There are several technologies for DNA synthesis [8].
Enzymatic synthesis is a potential alternative to phospho-
ramidite chemistry. In this process, engineered enzymes in-
corporate bases in a controllable fashion without a template.
This method promises to be cheaper, faster and cleaner
(water-based, as opposed to needing to use solvents). Making
synthesis scale requires a control mechanism to select which
bases to add to which sequences. This is often called
array-based synthesis: sequences are seeded on a surface
and reagents flow in succession to add bases in a cyclic
fashion. There are several basic technologies, from which
three are most commonly used: electrochemical and light-
based arrays, which selectively deblock sequences and adds
the same base to all deblocked sequences simultaneously;
and deposition-based arrays that use inkjet to selectively
deposit bases where they are to be added.

The most commercially-adopted DNA sequencing plat-
form today is based on image processing and the concept
called sequencing by synthesis. Single-stranded DNA se-
quences are attached to a substrate and complementary bases
with fluorescent markers are attached one by one to individ-
ual sequences (yet, in parallel for all sequences). The spatial
fluorescence pattern created by the fluorescent markers is
captured in an image, which is then processed and fluorescent
spots correlated to individual bases in the sequences. The
fluorescent markers are then chemically removed, leaving
complementary bases behind and setting up the next base
in the sequence to be recognized. Scaling such technology
to higher throughputs will depend on more precise optical
setups and improvements in image processing, and once
optical resolution limits are reached, this style of sequencing



will probably no longer be appropriate.

Another DNA sequencing solution that has been gain-
ing momentum is nanopore technology. The cornerstone
of nanopore technology is to capture DNA molecules and
force them through a nanoscale pore which causes small
fluctuations in electrical current depending on the passing
DNA. The main challenges in using nanopore devices for
DNA storage are controlling the high error rates resulting
from sensing these minute current fluctuations, which may
require heavy signal processing and more precise sensors,
and increasing the density of nanopores on a physical
substrate, as well as solving problems with clogging and
endurance of pores.

C. Brief History of DNA Data Storage

The general idea of using DNA as storage of synthetic in-
formation has been around since at least the mid 1960s, when
Norbert Wiener suggested the idea of “genetic” memory for
computers. In the past 6 years, work from Harvard [8] and the
European Bioinformatics Institute [9] showed that progress
in modern DNA manipulation methods could make it both
possible and practical soon. Many research groups, including
group at ETH Zurich, University of Illinois at Urbana-
Champaign, and Columbia University are working on this
problem. Our own group at the University of Washington
and Microsoft holds the world record for the amount of data
successfully stored in and retrieved from DNA: over 500
megabytes as of June 2018.

D. DNA-based computation

The kinetics of DNA hybridization enable more than just
a lookup operation. For instance, partial hybridization can
implement “fuzzy matching”, where the query and target do
not have to be entirely complementary, and the “fuzziness”
can be controlled by varying the temperature [5]. This
property can be leveraged to perform distance computations,
which we discuss further in

More recently, researchers have shown that hybridization
reactions can form complex cascades called strand displace-
ment reactions, which can be used to implement general
purpose computations, including boolean circuits [10] and
neural networks [11].

Beyond hybridization, evolution has led to a variety of
enzymes for processing DNA, including cutting, joining,
replication, and editing. These enzymes can be used to create
even more complex circuits.

ITI. HYBRID MOLECULAR-ELECTRONIC SYSTEMS

A hybrid molecular-electronic system aims to leverage
the best properties of each domain (Figure 3). As with any
heterogeneous system, the strengths and weaknesses of each
domain raise a series of critical design questions. In this
section, we discuss challenges and trade-offs pertaining to
physical constraints, communication, storage, and computa-
tion. We discuss these dimensions in general, and we provide
examples of how they guided design decisions in the systems
presented in [Section IV] and [Section V]
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Fig. 3: Hybrid eletronic-molecular architecture. Benefits of
electronic and molecular components. Different applications
may better fit the strengths of either domain. The arrows
show ways of getting data from electronic to molecular
components and vice-versa.

A. Physical Constraints

Molecular systems are unique because they require the
storage and manipulation of various solutions, including mix-
ing, splitting, diluting, and incubating them. Architects must
take care to ensure that a system is physically realizable.
Adleman’s famous DNA-based algorithm for solving the
Hamiltonian path problem [3] provides a cautionary tale: the
amount of DNA required grows exponentially with the graph
size. A system is not feasible if modestly sized problems
require swimming pools or oceans of DNA. The systems
presented in this paper, however, demonstrate that some
applications require only a small reaction volume and are
thus feasible.

Since we are trying to build computer systems, physi-
cal manipulation also necessitates automation. The various
steps of preparing, operating on, and analyzing samples
are typically done by humans in a wetlab. Microfluidic
technology could provide the needed automation, but it is
not yet advanced enough to support a practical computer
system. Some instances of the technology are not flexible
enough, and those that are remain error-prone and difficult
to program [12]. Furthermore, programming these hybrid
molecular-electronic systems will require intertwined control
code, sample manipulation, data analysis, and conventional
computation; these challenges remain to be explored.

B. Communication Considerations

How to move information between domains is a primary
concern for any heterogeneous system, and it is especially
important for hybrid molecular-electronic systems, where
communication can be expensive.

There are many ways to communicate from the electronic
domain to the molecular domain. DNA synthesis adds new
molecules representing data to the system. Physical ma-
nipulation also adds data: the choice of which samples to
combine determines the behavior of the system. Changes
to the environment (e.g., temperature, humidity) can also
control the system by influencing chemical properties.

Getting data from the molecular domain back into the
electronic domain varies as well. Some operations may ob-
tain enough data from a simple sensor reading: for example,



fluorescent markers can indicate the presence of a particular
substance or the occurrence of a reaction. DNA sequencing
provides even more information by reconstructing the exact
sequence of bases from a sample.

The cost of getting data into and out of molecular com-
ponents is a crucial consideration. The extreme density and
parallelism afforded by the molecular domain is of limited
use if the interface is a bottleneck. An efficient hybrid system
would send a relatively small amount of information to the
molecular domain, where lots of work would be done in
parallel, and return a relatively small amount of informa-
tion again to the electronic domain. In this respect, hybrid
molecular-electronic systems are similar to heterogeneous
systems with hardware accelerators.

C. Storage Considerations

Molecular computation is based on strand interaction, so
having some information already in the molecular domain
would reduce the amount of data that crosses the interface.
Bandwidth into and out of the molecular domain is limited,
so an existing database in molecular form could greatly im-
prove performance at execution time. Information stored in
DNA is dense and long-lived, so this molecular preprocessing
could be done out-of-band with actual execution.

The nature of molecular interactions may lead to destruc-
tive reads of edits of molecular information. We envision
getting around this potential issue via periodic molecular
amplification like polymerase chain reaction (PCR) or re-
synthesis. Re-amplification of the entire molecular database
could lead to errors accumulating over time (e.g., polymerase
errors are estimated to be 107 to 10~ per base). If resorting
to re-synthesis, it is important to include only data that
was read out and not the entire database, which would
possibly oversubscribe the electronic domain with excessive
data volumes.

D. Computation Considerations

When it comes to computation, our goal is to harness
the best of both the electronic and molecular systems.
Electronic platforms can be highly general and precise; they
can perform a wide variety of operations exactly as specified.
No molecular platforms exist today that match the generality
and precision of electronic systems, but they may offer orders
of magnitude improvements in performance and/or energy
efficiency.

Computationally, the main benefit of molecular systems
is that certain computations can be performed in a mas-
sively parallel fashion. For example, the systems presented
below use hybridization to search for exact and approximate
matches. Since both query and data are in solution and there
are multiple copies of both (DNA synthesis naturally creates
multiple copies of the molecules), the search operation is
entirely parallel. We refer to this molecular version of near-
data processing as near-molecule processing.

Interestingly, the latencies of these parallel operations
do not change with the size of the dataset: performing an
operation on a few items takes as long as doing it over
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Fig. 4: Overview of DNA-based data storage.

trillions. This “constant-time” performance is offset by a
large overhead; operations could take on the order to hours
to complete. As such, it may only be profitable to perform
such operations in molecular form when the dataset is above
a certain offload break-even size. As with electronic systems,
this break-even point also determines the granularity of
communication between the two domains.

IV. DNA DATA STORAGE

A DNA storage system takes digital data as
input, synthesizes DNA molecules to represent that data, and

stores them in a a physical container or pool. To read data
back, the system selects molecules from the pool, amplifies
them using polymerase chain reaction (a standard molecular
biology protocol), and sequences them back to digital data.
One can think of a DNA data storage system as a key-value
store, in which input data is associated with a key, and read
operations identify the key they wish to recover.

A. Requirements for End-to-End DNA-based Archival Stor-
age

The requirements of a storage system are low read/write
latency, high throughput (bits/s), random access and relia-
bility. DNA manipulation latency is significantly higher than
electronics. However, write and read throughput (bits/second)
can be competitive. This makes DNA-based storage a good
fit for archival purposes, where latency is not critical if
throughput is high enough. For example, current archival
storage services quote access times in minutes to hours
and sometimes service-level agreements (SLA) specify times
in the order of a day. But to be competitive with other
commercial systems, a DNA archival storage system will
need to offer throughputs of about 1 GB/s in a few years.

B. Encoding and Synthesis

Writing to DNA storage involves encoding binary data
as DNA nucleotides and synthesizing the corresponding
molecules. Synthesizing and sequencing DNA is far from
perfect (errors on the order 1% per position), hence we need
a robust error correction scheme. This process involves two
non-trivial steps. First, the trivial encoding from binary into
the four DNA nucleotides (A, C, T, G) produces problematic
sequences such as long stretches of repeated letters. We avoid
that with a rotating code [9] and randomization using one-
time pads [13]. Second, DNA synthesis technology effec-
tively manufactures molecules one nucleotide at a time, so
it cannot synthesize molecules of arbitrary length without
error. Based on current efficiency of synthesis methods and
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Fig. 5: Layout of a DNA strand for data storage. The primer
regions in both extremities are used to both enable molecular
amplification and to map molecules to the object [13], [14].
The index region is necessary when reassembling the right
order of payloads, since molecular storage does not have
fixed 3D physical structure across data items.

technologies, a reasonably efficient strand length for DNA
synthesis is about 150 nucleotides (a couple hundred bits
of information). The write process therefore splits input
data into small blocks which correspond to separate DNA
sequences.

Because DNA molecules do not offer spatial organization
like traditional storage media, we must explicitly include
addressing information in the DNA molecule. Figure [5|shows
the layout of an individual DNA strand in our system. Each
strand contains a payload, which is a substring of the input
data to encode. An address includes both a key identifier
and an index into the input data (to allow data longer
than one strand). At each end of the strand, special primer
sequences [13], [14] — which correspond to the key identifier
according to a hash function — allow for efficient sequencing
during read operations.

Splitting data into smaller strands requires a coding
method that provisions information for later reassembly.
Previous work [9] overlapped multiple small blocks, but
our experimental and simulation results show this approach
to sacrifice too much density for little gain. Our coding
scheme embeds indexing information within each block
and uses a Reed Solomon-based outer coding scheme [15].
Such coding methods provision what we refer to as logical
redundancy. Note that DNA synthesis makes many copies
of each sequences, and hence also naturally offers physical
redundancy, in the form of multiple copies of each sequence
(on the order of hundreds of millions). Overheads in ad-
dressing and error correction can be amortized with longer
strands, but because of diminishing returns and higher errors
in longer synthesis processes, it is not advantageous to go

beyond 500-1,000 nucleotides (Figure 6)).

C. Random Access

Random access is fundamental because it is not practical to
have to sift through a vast data archive to retrieve a desired
data item. Our design allows for random access by using
polymerase chain reaction (PCR). The read process first
determines the primers for the given key (analogous to a hash
function) and synthesizes them into new DNA molecules.
Then, rather than applying sequencing to the entire pool
of stored molecules, we first apply PCR to the pool using
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Fig. 6: Overheads as function of strand length.

these primers. PCR amplifies the strands in the pool whose
primers match the given ones, creating many copies of those
strands. To recover the file, we now take a sample of the
resulting pool, which contains a large number of copies of all
the relevant strands but only a few other irrelevant strands.
Sequencing this sample therefore returns the data for the
relevant key rather than all data in the system. As a side
note, while PCR amplification is not even (i.e., there may be
bias) and may amplify undesired strands, it is not a problem
for DNA data storage because of underlying error tolerance
of the encoding/decoding schemes.

While PCR-based random access [16], [14], [13] is a
viable implementation, we don’t believe it is practical to put
all data in a single pool. We instead envision a “library”
of pools offering spatial isolation. We estimate each pool to
contain about 1TB of data. An address then maps to both a
pool location and a PCR primer. This design is analogous to
a magnetic tape storage library, where robotic arms are used
to retrieve tapes. A production DNA-based storage system
would require the use of microfluidic automation to perform
the necessary reactions. Tape libraries offer random access
by robotic movement of cartridges and fast-forwarding to
specific tape segments. The equivalent in DNA would be
physically isolated “containers” with DNA, along with some
form of molecular selection prior to sequencing and decod-
ing. While PCR is the mechanism we have focused on so
far, one can also use magnetic-bead based and other DNA
random access methods.

D. Reading and Decoding

Reading back the data involves selecting the appropriate
pool where the data of interest is stored, retrieving a sample,
and sequencing the DNA. No matter the DNA sequencing
method, the result is a large number of reads. Recall that
each unique strand is replicated many times in the sequenced
sample, so the result will contain many reads for each unique
DNA sequence. The decode process will then have to use
this physical redundancy to cope with errors introduced by
synthesis and sequencing.

The decoder operates in three basic stages: The first step
is to cluster noisy reads by similarity to collect all available
reads that likely correspond to a unique originally stored
DNA sequence. To do so, we employ an algorithm that
leverages the input randomization done during encoding. The



next step is to processes each cluster to recover the original
sequence using a variant of the Bitwise Majority Align-
ment algorithm (BMA) [17] adapted to support insertions,
deletions, and substitutions. Finally, the bits are recovered
by using a Reed-Solomon (RS) code to correct errors and
erasures.

We have used an Illumina NextSeq instrument that im-
plements this technology to read over 200MB of encoded
data so far. We have re-sequenced the data several times,
which brings the total of digital data read from DNA to
the equivalent of well over 1GB. Sequencing error rates
have been reasonably low, typically below 1%, and has not
prevented us from decoding any files. The largest commercial
nanopore DNA sequencing device to which we have access
contains about 2,000 nanopores and delivers error rates of
about 12.5%, after recent improvements in its chemistry.
Despite this high error rate, we have been able to decode
a file read with this platform.

E. Our results so far

Our work so far demonstrates an end-to-end approach
toward the viability of DNA data storage with large-scale
random access. Although we have only reported on the
initial 35 files and 200MB of data [13], we have so far
encoded, stored, retrieved, and successfully recovered about
40 distinct files totaling about 400MB of data in more
than unique 25 million DNA oligonucleotides synthesized
by Twist Bioscience (over 3 billion nucleotides in total).
Our results represent an advance of more than an order of
magnitude over prior work. Our dataset focused on tech-
nologically advanced data formats and historical relevance,
including the universal declaration of human rights in over
100 languages, a high-definition music video of the band
OK Go, and a CropTrust database listing seeds stored in the
Svalbard Global Seed Vault.

We demonstrated our random access methodology based
on selective PCR amplification, for which we designed and
validated a large library of primers, and randomly accessed
arbitrarily chosen items from our whole pool with zero-
byte error. Moreover, we developed a novel coding scheme
that dramatically reduces the sequencing reads per DNA
sequence required for error-free decoding to about 6x, while
maintaining levels of logical redundancy comparable to the
best prior codes. Finally, we further stress-tested our coding
approach by successfully decoding a file using the more
error-prone nanopore sequencing.

V. NEAR-MOLECULE PROCESSING

Most computer systems consist of a few processors sur-
rounded by memory. To perform computation, the processor
must load data from memory, operate on it, and write
it back. Even parallel processors and GPUs still have to
load all of the relevant data before doing computation. As
applications become bandwidth-bound, instead of compute-
bound, researchers have sought to bring compute closer to
the data [18].
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In the molecular setting, we can take advantage of nature
to perform massively parallel near-molecule computation. If
we can formulate the operation and data such that the result
we want is thermodynamically favorable, the operation will
diffuse through solution and happen everywhere simultane-
ously. Random access through hybridization and PCR as
discussed in the previous section is an example of this. The
query strand “searches” for target in the entire dataset, all
at once. However, random access in electronic systems does
not scan the entire dataset, so molecular retrieval does not
offer any performance gain.

Here we explore a more compelling case for near-
molecular processing. We describe a DNA-based hybrid sys-
tem for content-based image retrieval which we call MASS
(molecular accelerated similarity search). MASS relies on a
biomolecular mechanism for “fuzzy matching” that has not
yet been demonstrated but we believe is feasible. The pur-
pose of this section is to, given a new molecular mechanism,
discuss how to design a feasible hybrid molecular-electronic
system. We also explore the practicality of such a system
with a model of its latency, necessary reaction volume, and
scalability.

A. Molecular Accelerated Similarity Search

Similarity search is a mechanism for searching a large
dataset for objects similar to some given query. We focus on
a particular instance of this problem, content-based image re-
trieval (CBIR), the task of finding images that appear visually
similar to a given query image. CBIR systems power real-
world applications such as Google’s reverse image search.
Figure 7] shows a stack diagram for our proposed CBIR
implementation and a purely electronic one.

The first step in building a CBIR system is to extract visual
features from each image in the database. Visual features
are usually real-valued numbers that represent the activity
of some filter applied to the image. These can be hand-
engineered features like scale-invariant feature transform
(SIFT) [19], or learned features such as intermediate layer



activations from a deep neural network [20]. Pairs of feature
vectors can be compared using familiar functions such as
Euclidean or cosine distance. To find images that are visually
similar to a query, the system searches for image feature
vectors within some distance of the query’s feature vector.

Ordinarily, such searches could be accelerated by partition-
ing the data into a tree-like data structure. However, when
feature vectors are high-dimensional, partitioning schemes
become no better than a linear search. This phenomenon
is popularly known as “the curse of dimensionality”. Real
systems overcome this limitation by using approximation
schemes that reduce the amount of data to be sifted through,
at the cost of potentially missing similar images [21], [22],
[23].

Ultimately, a high-recall CBIR system must examine a
large part of the dataset. This provides an opportunity for
MASS to outperform its purely electronic counterparts by
using the near-molecular compute afforded by the molecular
domain.

B. Architecture
Much like our DNA data storage system described in

the database of the MASS system consists of
DNA strands that associate a primer with some data. Instead
of mapping an address (the primer) to some data, the strands
in the MASS database map encoded feature vectors to the
address of the image in some other database. So the MASS
system deals with the image feature vectors and the addresses
of the images instead of the actual image data.

shows the lifetime of single query in the MASS
system. The input to the system is a query feature vector
which is encoded into a string of bases and then synthesized
into (many copies of) a query strand. The query strands
are then combined with a small sample of the database
in the reaction vessel. In the reaction, the query strands
will partially hybridize with matching targets, performing
the similarity search with massive parallelism. The matching
targets can then be sequenced, yielding the addresses of the
similar images. The images themselves can then be retrieved
from a different database downstream, potentially a DNA
data store like ours described in

The encoder is a critical part of the system that we
leave unspecified. We believe that it is possible to encode
feature vectors into DNA such that their similarity correlates
with partial hybridization efficiency, but this remains to be
demonstrated in future work.

The following section will describe the protocol for the
molecular search in detail. We will also introduce a simple
analytical model that relates the important quantities describ-
ing the protocol. The model will let us predict the systems
latency and physical feasibility.

C. Modeling a Hybrid Molecular-Electronic System

shows the equations that comprise the model.
Parameters marked with Syn refer to the synthesized query,

rxn refers to the reaction vessel, and seq refers to the
solution that actually gets sequenced. They will be introduced

Param Value Description

lsyn 100 bases Length of query strand

T'syn .02 b/s  Synthesis rate in bases per second

Lsyn 83 min Synthesis latency

Nrxn lel6 Number of unique strands in reaction

Crxn 10 Copies of each unique strand in reaction

Vexn 1.7 ml  Volume of reaction

Prxn 100 uM  Concentration of strands in reaction

Nseq 10,000 Number of unique strands sequenced

Cseq 40 Copy number required for sequencing

lseq 100 bases Length of strands that get sequenced

Tseq 226 b/s  Sequencing rate in bases per second

Iseq 2 min Sequencing latency

Isyn = lsyn/rsyn (D
VixnPrxn = MrxnCrxn (2)
tseq _ Cseqlseqnseq (3)
T'seq

Fig. 8: Parameters for the content-based retrieval model and
equations that describe their relationships.

as they become relevant, but shows a summary of
all model parameters and their values in a potential design.

1) Query Synthesis: The protocol starts by synthesizing
many copies of the query strand, which represents the
encoded feature vector of the query image. DNA synthesis
makes many copies of a strand at once, so the latency is
proportional to the length of the strand, not the number of
copies. Synthesizing many copies helps ensure that partial
hybridization happens quickly and allows us to perform PCR.

To get the latency of synthesis, we model the the length
of the synthesized strand /s, and the rate of synthesis rgyn.
shows how to calculate the latency of query
synthesis.

2) Reaction: The reaction vessel initially contains a sam-
ple from the database (see [Figure 7). The rxn parameters
describe this sample of target strands in the reaction vessel,
not the synthesized query strands.

The number of unique targets in the reaction vessel is
Nn, and each unique strand is replicated ¢y, times. This
replication factor ¢, is also called the copy number. There
are MynCrxn total target strands in the reaction. These are
stored at some concentration Py, which determines the
volume Vyyn; shows this relation.

Because the targets come from a sample of the database,
the reaction has the same concentration (pr,) and number of
unique targets (7,x,) as the database. The number of unique
targets determines the capacity of the system; the reaction is
effectively searching over n,, unique image feature vectors
in parallel.

Once the query strands are added to the database sample,
partial hybridization binds the query to similar targets. These
targets can be retrieved with a procedure similar to the one
used in DNA data storage (Section IV). For example, PCR
can amplify strands that hybridized, leaving the reaction
vessel dominated by target image features that were similar



(and bound to) the query.

3) Sequencing: Once the reaction vessel is dominated by
similar target strands, we take a sample of the vessel to
avoid unnecessary sequencing. We sample such that we only
Sequence csq of each unique strand.

The number of unique strands (nseq) to be sequenced,
their copy number (cseq), and their length (lsq) together
determine the number of bases to be sequenced. This and
the sequencing rate r.q determine the latency (Equation 3).

Note that the amount to be sequenced is not dependent
on the size of the dataset, n,x,. Unlike electronic systems,
whose time-to-solution is proportional to the size of the
dataset, the molecular system instead depends on the size
of the result. This is the fundamental benefit provided by the
near-molecule computation.

For massive datasets on the order of trillions of images or
more, the number of images similar to a given query could
be quite large, so controlling the number of desired results
(those that end up getting sequenced, nsq) independently of
the dataset size n,y, is crucial to maintain good performance.
To that end, the temperature of the reaction vessel can be
raised or lowered to get more or fewer similar results.

D. Model Instantiation

Using the model in we can derive the laten-
cies (fsyn and tsq) and capacity of the system (n,). The
remaining model parameters are constrained by either the
biomolecular protocol or technology limits.

1) Protocol Constraints: We choose the reaction concen-
tration Py, = 100M, a common concentration for synthetic
DNA [24]. We choose the reaction copy number ¢, = 10.
PCR is incredibly specific, we have observed it working
when the copy number is as low as 5.

We chose length of the synthesized query, /sy, to be 100
bases. We believe that this is sufficient to encode feature
vectors given a dimensionality reduction. The length of the
target strands that get sequenced, lsq, is 160 bases. This
allocates 100 bases for the encoded feature vector and 60
bases for the address. At a density of 1 bit per base [13], 60
bases is sufficient to uniquely address n., = le16 images.

2) Technological Constraints: Sequencing and synthesis
are expected to get exponentially faster, improving at a rate
exceeding Moore’s Law [2]. However, we chose to model
sequencing and synthesis rates that are achievable today.

We draw the synthesis rate for our model, 75, from
recent literature proposing a method to synthesize a base
every 50 seconds [25]. Recall that synthesis time
is proportional only to the length of the strand, not the
copy number. Synthesis of a single unique strand is already
commercially available on the scale of millimoles, which is
well above the amount we require.

Note that we are assuming the existence of a large database
of potentially up to 10 quadrillion of unique targets. This
is beyond the capability of DNA synthesis today. Today’s
technology can synthesize many unique strands of DNA at
once, on the order of millions [13], but making a database

that references 10 quadrillion images would only become
feasible with further advancements.

3) System Capability: Plugging the above constraints into
the model yields a synthesis latency of t;,, of 83 minutes and
a sequencing latency fseq of 2 minutes. These are of course
rough estimations due to the coarse granularity of our model.
The partial hybridization and PCR reactions would take on
the order of hours. The bottlenecks are clearly DNA synthesis
and the reactions, not sequencing.

If we plug in a dataset size (equal to the number of unique
strands in the reaction, 7,y,) of 10'°, the model shows we
only require a reaction volume of 1.7 mL. Modeling other
systems is outside the scope of this paper, but we believe
that MASS would be competitive with or outperform purely
electronic systems at this scale.

VI. DISCUSSION

Both synthesis and sequencing need to be lower cost and
higher throughput than they are today for DNA data storage
and computing to succeed. The gap in both dimensions is
daunting, estimated to be about 6 orders of magnitude, but it
is important to note that, when used for data storage, DNA
synthesis and sequencing have different requirements than
for life sciences. First, when storing data, control over the
sequences to be synthesized allows for the use of smart
error correction to tolerate error rates orders of magnitude
higher than those required for life sciences applications.
Second, storage applications can tolerate completely missing
sequences as well as contamination. Third, data storage
needs very few copies of each sequence, compared to the
much higher life sciences requirements. Higher synthesis and
sequencing density implies simultaneously higher throughput
and lower costs, so it will be key to a practical, large-scale
end-to-end DNA storage system.
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