
Scaling Microfluidics to
Complex, Dynamic Protocols

Invited Paper

Max Willsey∗, Ashley Stephenson∗, Chris Takahashi∗, Bichlien Nguyen†, Karin Strauss†, and Luis Ceze∗
∗Paul G. Allen School of Computer Science & Engineering, University of Washington †Microsoft

Email: mwillsey@cs.washington.edu

Abstract—Microfluidic devices promise to automate wetlab
procedures by manipulating small chemical or biological samples.
We are developing a full-stack microfluidic automation platform
that allows and allows users to scale up the complexity of
microfluidic programming, encouraging them to mix fluidic
manipulations with traditional programming.

Puddle is a runtime system that provides a high-level API for
microfluidic manipulations. It manages fluidic resources dynam-
ically, allowing programmers to freely mix regular computation
with microfluidics, resulting in more expressive programs. It also
provides real-time error correction through a computer vision
system, allowing robust execution on cheaper digital microfluidic
hardware.

We have been running Puddle on PurpleDrop, a new digital
microfluidic device that is affordable and has novel features such
as fully automated input/output of fluids. With this combination,
we have demonstrated PCR with automated replenishment, a
DNA sequencing preparation protocol, and the complete retrieval
of digital data stored in dehydrated spots of DNA on the device’s
surface.

Going forward, we see Puddle and PurpleDrop as part of
a platform for further research. PurpleDrop is affordable and
extensible, which makes a compelling case for adding new
periferials or even scaling out by connecting multiple devices.
And Puddle provides a flexible and abstract programming model
that could enable microfluidic programs to run on different
hardware targets (DMF or liquid handling robots), or even a
combination thereof.

I. INTRODUCTION

Microfluidic technology facilitates the automation of chem-
ical and biological protocols. These devices manipulate small
quantities of liquid at smaller scales and with higher precision
than humans. Laboratories can use these devices to save time,
labor, and supplies. Outside of the lab, microfluidic automation
also promises to advance fields like medicine, education, and
molecular computation/storage.

Puddle [1] is a a full-stack, open-source1 microfluidics
system with a high-level programming model that allows
unrestricted combination of computation and fluidics. Instead
of a new programming language, Puddle is a runtime system
that provides microfluidic manipulations through an API.
Users write programs against the Puddle API, and Puddle
dynamically manages the fluidic resources.

The relatively small Puddle API abstracts away low-level
details like fluidic location, providing many benefits to users:

1Both the Puddle software and the PurpleDrop hardware are open-source
and available at http://puddle.bio

• Users can write high-level programs that dynamically
combine fluidics and computation in Python (or the
general-purpose programming language of their choice).

• Users can program interactively and design, share, and
reuse domain-specific libraries.

• Multiple users can safely and simultaneously run proto-
cols on the same device.

• Protocols can run on different hardware with little to no
modification.

The same abstraction allows users who would like the
extend Puddle flexibility along many axes:

• Users can define their own operations for Puddle to plan
and execute.

• Researchers can modify Puddle to use new, advanced
placement and routing algorithms.

• Researchers or hardware designers can even define new
hardware backends.

These benefits stem from Puddle’s key innovation: dynam-
ically managing resources (i.e., fluids) in response to API
calls. Existing work takes a more static approach, trading
off programming expressiveness for the ability to statically
plan microfluidic execution. Solutions compete on metrics
such as synthesis time, placement and routing efficiency, and
simulation ticks to completion. This static approach comes at
the cost of excluding or restricting programming features such
as data structures, loops, functions. Puddle comes from the
other side of the design space; we maximize expressiveness
and ease-of-use while trading off some efficiency and ahead-
of-time guarantees.

Our current hardware backend is PurpleDrop [1], an af-
fordable general-purpose microfluidic device with capabilities
such as fully-automated fluidic input/output, heating, and a
camera to power our computer vision error correction system.
Puddle and PurpleDrop constitute a complete system stack for
microfluidic programming.

This paper will describe the design of Puddle and how it
allows for the power and flexibility described above. We will
also document some of the benchmarks and case studies we
have performed. Finally, we will conclude with ideas for future
work that builds on Puddle.

II. DYNAMIC MICROFLUIDIC PROGRAMMING

We aim to enable users to combine computation and flu-
idic manipulation in an unrestricted, high-level programming

High-level Programs

Domain Specific
Libraries

API

Analysis

Planning

Control & Monitoring

Digital
Microfluidics

Other
Backends

P
ud

dl
e

U
se

r c
od

e
H

ar
dw

ar
e

Sensors

Fig. 1: Users program in a high-level, general-purpose lan-
guage where they can combine Puddle’s primitives into
domain-specific libraries. Programs call into the Puddle run-
time, which plans execution and controls the hardware. Sensor
data can be returned to the user through the API, and it also
informs the execution. Darkened boxes indicate potential for
expansion in future work.

model. We picture programs not only reacting to sensor
data, but using metaprogramming, cloud resources, machine
learning, and other techniques from the full range of com-
puting in conjunction with microfluidics. Accomplishing this
hinges on allowing the user to program in a general-purpose
programming language.

Unlike other solutions for microfluidics programming [2],
[3], [4], [5], Puddle is not a programming language but a
runtime system that provides a high-level API for microfluidic
manipulations. The runtime system dynamically manages the
fluidic resources (droplets), imposing no restrictions on the
user’s programming model. As a result, Puddle has no knowl-
edge of the control structure of user’s program, but it does
discover the data flow through non-blocking API calls. This
lack of knowledge is the key trade-off of Puddle’s design: it
allows a completely unrestricted programming model in any
programming language, but it prevents Puddle from making
static guarantees about the (error-free) execution of a protocol

1 min_volume = 10 * microliters
2

3 def thermocycle(droplet, temps_and_times):
4 for temp, time in temps_and_times:
5 heat(droplet, temp, time)
6 if volume(droplet) < min_volume
7 # ’+=’ is a mutating mix
8 droplet += input("water", min_volume)
9

10 def pcr(droplet, n_iter):
11 iters = n_iter * [
12 (62, 30 * seconds),
13 (72, 20 * seconds),
14]
15 params = [(95, 30 * seconds)] + iters
16 thermocycle(droplet, params)

Fig. 2: Python code for polymerase chain reaction (PCR)
and thermocycle. The heating in thermocycling can evaporate
droplets, so the code replenishes with water if necessary.
Note that list multiplication in Python is concatenation, e.g.
3 * [1] == [1, 1, 1]

like some synthesis tools could.
While the Puddle API is language-agnostic (we provide

frontends in both Rust and Python), we focus on the Python
frontend for this paper. Python snippets shown throughout the
paper will have calls into Puddle underlined.

A. Example

Figure 2 shows some example Puddle code in the Python
frontend. It defines two regular Python functions. The
thermocycle function repeatedly heats up a given droplet
based on a given Python list of temperatures and times.
The pcr function performs polymerase chain reaction, which
duplicates DNA by thermocycling the droplet with a specific
set of parameters.

Importantly, all of the control is handled by Python. The
functions, loops, lists, and if statements all work as expected.
While the Puddle API is functional (see below), each frontend
is free to wrap the API in a way that is idiomatic for the
language. In Python, the heat API call is mutating, and the
+= operator is overloaded to perform a mutating mix.

When the pcr function is called, thermocycle is called
and a heat API call is made. That and all other fluidic
actuations are non-blocking, as described below, so Puddle
quickly returns an opaque token. Non-blocking calls give
the runtime system more flexibility in how to implement
operations on the microfluidic device.

On the other hand, the volume API call is a sensor reading,
and is therefore blocking. The volume of a droplet is a dynamic
property; it cannot (in general) be known statically. These calls
must block and wait for the system to produce the relevant
droplets and take the sensor reading, because the return value
is just a number that the user’s program (which Puddle knows
nothing about) could manipulate and branch on.

Fluidic I/O
input(name, volume) → d
output(name, d)

Sensing
volume(d) → volume of d
temperature(d) → temp. of d

Fluidic Manipulation
mix(d1, d2) → d
split(d) → (d1, d2)
heat(d, temp, time) → d′

Other
flush(d1, d2, ...)

Fig. 3: The Puddle API. ds are droplet ids, opaque handles
to droplets. All calls are non-blocking except for those under
Sensing and the special flush call.

B. Programming Interface

The API’s most important feature is that it deals in opaque
handles to droplets called droplet ids. The user cannot intro-
spect on these ids (they are just numbers), so all queries and
manipulations of droplets must go through the API. Therefore,
Puddle is free to reorder, optimize, or delay performing the re-
quested operations, allowing many calls in the API to be non-
blocking. This opacity also allows Puddle to provide automatic
error correction and process-like isolation for concurrency.

The Puddle API is listed in Figure 3. The calls for fluidic I/O
and manipulation are non-blocking; they immediately return a
fresh droplet id. The fluidic I/O calls are indexed by a name,
which refers to an input pump based on a configuration file
with the hardware details. The fluidic manipulation functions
are self-explanatory; they mix, split, or heat their arguments.
Note that they are functional, consuming their droplet id
arguments and returning new ones.

The sensing API calls force the system to “flush” by
performing the operations necessary to actually produce the
droplet to be sensed. The volume operation reads the volume
using the camera. The temperature operation measures the
temperature using an onboard sensor.

The flush operation allows the user to manually force
Puddle to realize the specified droplets (or all of them, if none
are given), which is useful in interactive programming.

Users can easily extend the Puddle API with their own ac-
tuation and sensing primitives. The mechanism for allocating
space on the device (Section III-B2) is sufficiently general to
implement other primitives that the hardware might support.

C. Handling Errors

API calls can fail instantaneously for two reasons: invalid
arguments or using a consumed droplet id, as droplets are
physical resources that can only be consumed once. These
failures happen as soon as the API call is made and are
recoverable; the error propagates back to the user (in the form
of an exception in the Python frontend). It is the program-
mer’s responsibility to not reuse droplet ids that have been
consumed. An imperative interface (like heat in Figure 2) can
help prevent this problem by changing the droplet id that the
wrapper object refers to. The Rust frontend statically prevents
droplet reuse through its ownership-based type system.

Additionally, hardware failures may occur during execution,
making droplets not move or actuate as planned. Most of these
are automatically detected and corrected by Puddle’s error

A
B

C

D E

F

G

Fig. 4: PurpleDrop, our digital microfluidic device. The parent
PCB (A) contains the electronic components, and the child
(B) contains the electrodes and the hydrophobic surface. The
device supports heaters on the bottom three electrodes (C). We
can drive up to three pumps (D) that can input or output fluids
on the edge of the device (E). PurpleDrop is controlled by a
Raspberry Pi over the 40-pin connector (F). The Raspberry Pi
connects to a camera on a 3D-printed mount (G).

correction system (described in Section III-C). In rare cases,
however, an error can result in a situation that is unrecoverable
(e.g. the number of failed electrodes prevents routing). Because
actuation API calls are non-blocking, the program may have
progressed with the assumption that the promised droplets will
be actually produced. Therefore, Puddle treats this case as
unrecoverable and throws an exception to the user.

III. IMPLEMENTATION

Our implementation spans three levels of the stack shown
in Figure 1: a frontend that facilitates high-level microfluidic
programming against the Puddle API, the Puddle runtime
system which implements the API detailed in Section II,
and PurpleDrop, the DMF device which Puddle controls.
The interface and programming model were covered in the
previous section; here we detail the implementation of the
hardware and runtime system.

A. PurpleDrop DMF Device

We designed our digital microfluidic device, PurpleDrop,
with simplicity and accessibility in mind. All together, the
components cost on the order of $300, orders of magnitude
less than many other microfluidic systems. Furthermore, the
design uses commodity components and does not require
a clean room, so anyone with electronics experience could
assemble PurpleDrop on their own or have it assembled by
a PCB assembly service. Figure 4 shows the device and
enumerates its components.

PurpleDrop runs in air (without an oil medium) for easier
setup. Input and output are driven by small peristaltic pumps
which carry droplets to/from test tube reservoirs or other

API Call Plan Simulate
& Record Execute

RollbackReplan

FinalizeReject
bad arguments

Reject
infeasible

Crash
not recoverable

reify Accept
return droplet id
if non-blocking

detect
error

Fig. 5: The life of a command. Dashed edges end the flow
immediately. Commands may be rejected if the API call was
malformed or a feasible execution plan cannot be found.
The user can recover from rejected commands, but not from
failures to replan accepted ones.

devices. PurpleDrop also includes heaters and temperature
sensors. A camera mounted on top of the device serves as
a multi-purpose sensor; it can detect the volume of droplets,
and it also powers our error detection system.

B. Planning and Execution

Because all the complications of a programming language
(loops, function calls, conditionals) are handled at the user
level, the internals of Puddle are concerned only with the
planning and execution of API calls.

Figure 5 shows the entire lifetime of an API call. The first
step is reification into a command, the object used internally
to represent a request from the user. The remainder of the flow
operates on these command objects. All types of commands
(input/output, sensing, actuation) go through the same flow,
so a user can extend Puddle with a new primitive without
modifying the planning and execution infrastructure.

1) API Calls to Commands: Commands store the opera-
tions’ arguments, input droplet ids, and freshly created output
droplet ids for droplet manipulation operations. These output
droplet ids correspond to the droplets that command will
make if successfully executed. After the command is created
and planned, the system can return these ids if the API call
was non-blocking, allowing the program to proceed without
waiting on execution.

2) Planning: Reified commands form a DAG where the
edges are their droplet id dependencies. A scheduler chooses
which pending commands to plan and execute.

Each command makes an allocation request for space on
the microfluidic board. For example, mix requests a rectangle
slightly larger than the resulting combined droplet so it has
space to move the droplet in a circle, agitating the mixture. The
allocation request can also place constraints on the features
of the space, e.g. heat requests a space with a heater. A
placement algorithm finds a way to satisfy the request. The
allocation request also specifies the (relative) desired locations
of the input droplets. In the case of mixing two 1×1 droplets,
for example, mix will request a 3× 2 rectangle and ask that

the input droplets start at coordinates (0, 0) and (1, 0). After
the allocation request is placed, the router finds paths for the
input droplets to their specified locations. Both placement and
routing ensure that droplets stay at least 1 space apart to avoid
collisions.

If either placement or routing fails, the command is rejected
as infeasible. Planning happens right after command creation,
so the user gets an immediate, recoverable error. If planning
succeeds, then non-blocking API calls can return droplet id(s)
knowing that their successful execution is at least feasible
(although not guaranteed in the face of hardware errors).

Puddle is modular over its placements and routing algo-
rithms. Researchers could easily be plug in different algo-
rithms without modifying the frontend, commands, or hard-
ware backends.

3) Simulation and Recording: Once a blocking command
comes in, before execution begins, the planned commands are
first simulated. Each time step in the simulation is recorded,
resulting in a record of where each droplet is (and thus which
electrodes to activate) at every moment. The record provides a
view into the future state of the microfluidic device assuming
that no hardware errors occur during execution.

Puddle only simulates droplet movement to check for errors
and determine the presence and location of droplets on the
DMF device at each timestep. Chemical results of actuations
on the droplets or mixing them are not simulated. Simulation
does, however, record when actuations occur, so execution can
perform them when it “replays” the record.

4) Execution, Monitoring, and Rollback: Execution simply
consists of popping the earliest state from the simulation
record, and activating the electrodes (and any peripherals)
according to the droplets’ position in that state. After a short
delay, Puddle uses its computer vision system (described in
Section III-C) to detect the actual state of droplets on the
device. If the actual state does not match the expected state,
the system triggers a rollback. This “check and correct” flow
is similar to previous work [6] that uses capacitance sensing
instead of computer vision.

A rollback consists of deleting the record and replanning
all commands which have not been completed. Replanning is
identical to planning, except that failure to replan is unrecov-
erable (Figure 5). Non-blocking API calls may have already
returned with a droplet id that essentially promises that new
droplet. Since Puddle had no knowledge of the program, we
have no choice but to terminate.

During the rollback, Puddle can also mark any electrodes
that failed to move a droplet as dead. Otherwise, the rollback
would replan the same route over the same electrode, and the
error would occur again. Section IV-A demonstrates how this
allows execution on a DMF with faulty electrodes. The user
can tune this behavior, forcing Puddle to retry an electrode a
certain number of times before marking it as dead.

C. Error Detection via Computer Vision

The previous section discussed how Puddle corrects errors
via the rollback and replan mechanism, but not how we detect

Fig. 6: A computer vision system identifies droplets in real
time for error detection and volume measurement.

them. Like other works, we use a computer vision system to
localize the droplets on the DMF device. However, our system
is more flexible. Past work has required either a template
image for a droplet [7] or a reference background image of
the electrode array [8], [9].

We detect droplets based on color. We tint all the input
fluids with green dye, and then calibrate the vision system to
that hue. Any object within that hue range is recognized as a
droplet. Compared to other approaches, ours scales to different
sizes of droplets and is less sensitive to light changes.

The shape detection portion of error detection is imple-
mented in OpenCV [10]. Once the shapes are detected, Puddle
must determine if the set of shapes constitutes an error.
Distances between expected and actual form a bipartite graph,
and we find a matching using the Kuhn-Munkres algorithm
[11]. If they are all similar enough, execution proceeds. If
there is a significant difference between the expectation and
reality according to the camera, we convert the shapes into
the new expected state and trigger a rollback, which replans
unfinished commands starting from the new state.

IV. CASE STUDIES

We evaluate our system both quantitatively and qualitatively.
First we evaluate the computer vision system in isolation,
then we evaluate it in the context of error detection and
correction. We then demonstrate Puddle’s ability to write high-
level programs and interface with other computer systems with
two case studies.

A. Error Correction

In Puddle, we use the droplet position and size information
as part of a larger error correction system including droplet
matching, rollback, and replanning (detailed in Section III-B).
To evaluate these mechanisms and their impact on DMF
reliability, we staged an endurance test on the microfluidic
device.

DMFs can suffer from either inherent or use-induced failure.
Flaws inherent to the device itself, e.g., surface flaws or poor
electrical contact in the wiring for some electrodes, lead to
failure early in execution. Use-induced defects, e.g., droplet
evaporation or surface wear, lead to failure later in execution.
Our endurance test demonstrates that Puddle’s error correction

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0
2
4
6
8

10
12
14
16
18
20

Circle around board

C
um

ul
at

iv
e

er
ro

rs
co

rr
ec

te
d

Fig. 7: To test error correction, we moved a droplet in circles
until failure. Total experiment time was 2 hours and 11
minutes. Along the way, the computer vision system detected
and corrected errors, marking regions of the board as faulty
and avoiding them in the future. The errors at the beginning
correspond to faulty electrodes; those at the end were caused
as the droplet evaporated.

can extend the life of a DMF device, allowing it to run longer
protocols in the face of both types of failure. We specify four
points on the chip near the corners and route a droplet between
them over and over until the system eventually marks so many
electrodes as faulty that routing fails.

Figure 7 shows the results of our endurance test. Note that
six errors occur relatively soon in the test, before the comple-
tion of the fourth loop. Without error correction, a protocol
would be forced to terminate here. These errors were due to
poor electrical contact, resulting in a weaker electrowetting
force that failed to pull the droplet to that electrode. Our
error correction system identified these electrodes and avoided
them in later loops. The later errors (starting around loop
34) were due to evaporation, leaving the droplet too small to
move reliably. The next section demonstrates how automatic
replenishment can deal with evaporation.

B. PCR and Thermocycling

Many chemical or biological protocols include thermocy-
cling, or repeated heating and cooling, to speed up a reaction or
denature a reagent. Thermocycling poses a challenge to current
DMF systems that operate in air (as opposed to oil): The
heating portion of thermocycling could evaporate the small
droplets being manipulated on the DMF device.

From a programming perspective, the natural way to express
thermocycling is with a loop. Moreover, thermocycling is
not a protocol in itself, but rather it is an important part of
many other protocols. Ideally, we would write the code for
thermocycling once, and its behavior would be parameterizable
and reusable.

Figure 2 shows our implementation of thermocycling in
Puddle. The use of functions, data structures, and data-
dependent control-flow put this implementation out of reach
for any other high-level microfluidic programming system that
we know of.

We also implemented polymerase chain reaction (PCR)
using thermocycle as subroutine. PCR is an important

def dna_lookup(key):
spot = SPOTS[key]
d = input(...)
d.mix_at(spot)
sleep(60 * seconds)

output("sequencer", d)

data = get_data()
seq = process(data)
return seq

2

3
4

Droplet input

Output to sequencer

1

5

Fig. 8: Code and diagram for DMF retrieval of dehydrated
DNA samples. The gray dots represent the DNA samples dried
onto the glass top-plate. To retrieve a sample, (1) a droplet is
added to the board, (2) the droplet navigates to the sample of
interest and (3) sits under the dehydrated spot, rehydrating the
sample in the droplet. The droplet can then (4) proceed the
edge of the board, and (5) get outputted to the DNA sequencer.

protocol in synthetic biology that selectively amplifies DNA
in a solution. We performed 8 cycles of PCR which re-
quired 2 replenishments to avoid evaporation. The procedure
doubled the amount of DNA in our 10 microliter sample.
While commercial PCR instruments achieve more efficient
amplification, our PCR protocol was successful and can be
improved with more precise heaters and temperature sensors.
To our knowledge, this is the first fully-automated execution
of PCR with replenishment on a DMF device in air.

C. Key DNA

In prior work [12], we demonstrated the ability to store
and retrieve dehydrated samples of DNA on the glass top-
plate of our DMF device. Figure 8 describes how the storage
and retrieval works. The prior work focuses on characterizing
the capabilities of such a storage scheme. In short, retrieval
and successful sequencing of the samples is possible, and
any contamination was well within noise of the inherently
stochastic sequencing process.

We can write the protocol from that work in Puddle to fur-
ther demonstrate the power of Puddle’s programming model.
Figure 8 also includes code that would perform the protocol
as described in the figure, with the addition of looking up the
spot location in a table (SPOTS). The snippet also includes
pseudo-code for performing the actual sequencing. We have
demonstrated that we can output samples from PurpleDrop
directly onto DNA sequencers, but we did not find an API to
automate the sequencing, a human still had to initiate it. But
given such an API, the code in the figure represents a single
Python function that takes in data (a key), returns data (the
sequence of the DNA at that spot), and uses microfluidics in
between.

V. CONCLUSION

We presented Puddle, an open-source system that provides
a high-level API for microfluidic manipulations. Using this

API from a general-purpose programming language enables
unprecedented flexibility, allowing programs to freely combine
traditional and microfluidic programming. We also described
PurpleDrop, and we enumerated some uses of the Puddle/Pur-
pleDrop stack that highlight this style of programming.

Presently, we use PurpleDrop exclusively as the hardware
backend. We also use relatively simple algorithms for place-
ment and routing. But, as shown in Figure 1, Puddle is rich in
opportunties for future work. More operations, more advanced
placement and route algorithms, and even new hardware
backends could be implemented without breaking the API.
The flexiblity over backend is particularly exciting, as it could
provide the foundation for a unified microfluidic programming
model over many different devices. This could also be a basis
for combining backends, creating a heterogeneous microfluidic
platform that combines the best of several devices.

REFERENCES

[1] M. Willsey, A. P. Stephenson, C. Takahashi, P. Vaid, B. H. Nguyen,
M. Piszczek, C. Betts, S. Newman, S. Joshi, K. Strauss, and L. Ceze,
“Puddle: A dynamic, error-correcting, full-stack microfluidics platform,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’19. New York, NY, USA: ACM, 04 2019.

[2] D. Grissom, C. Curtis, S. Windh, C. Phung, N. Kumar, Z. Zimmerman,
O. Kenneth, J. McDaniel, N. Liao, and P. Brisk, “An open-source
compiler and pcb synthesis tool for digital microfluidic biochips,”
INTEGRATION, the VLSI journal, vol. 51, pp. 169–193, 2015.

[3] C. Curtis, D. Grissom, and P. Brisk, “A compiler for cyber-physical
digital microfluidic biochips,” in Proceedings of the 2018 International
Symposium on Code Generation and Optimization. ACM, 2018, pp.
365–377.

[4] J. Ott, T. Loveless, C. Curtis, M. Lesani, and P. Brisk, “Bioscript:
programming safe chemistry on laboratories-on-a-chip,” Proceedings of
the ACM on Programming Languages, vol. 2, no. OOPSLA, p. 128,
2018.

[5] V. Ananthanarayanan and W. Thies, “Biocoder: A programming lan-
guage for standardizing and automating biology protocols,” Journal of
Biological Engineering, vol. 4, no. 1, p. 13, 2010.

[6] K. Hu, B.-N. Hsu, A. Madison, K. Chakrabarty, and R. Fair, “Fault
detection, real-time error recovery, and experimental demonstration for
digital microfluidic biochips,” in Proceedings of the Conference on
Design, Automation and Test in Europe, ser. DATE ’13. San Jose,
CA, USA: EDA Consortium, 2013, pp. 559–564. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2485288.2485426

[7] Y. Luo, K. Chakrabarty, and T.-Y. Ho, “Error recovery in cyberphysical
digital microfluidic biochips,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 32, no. 1, pp. 59–72,
2013.

[8] Y.-J. Shin and J.-B. Lee, “Machine vision for digital microfluidics,”
Review of Scientific Instruments, vol. 81, no. 1, p. 014302, 2010.
[Online]. Available: https://doi.org/10.1063/1.3274673

[9] P. Q. N. Vo, M. C. Husser, F. Ahmadi, H. Sinha, and S. C. C. Shih,
“Image-based feedback and analysis system for digital microfluidics,”
Lab on a Chip, vol. 17, no. 20, pp. 3437–3446, 2017.

[10] G. Bradski and A. Kaehler, “Opencv,” Dr. Dobb’s journal of software
tools, vol. 3, 2000.

[11] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the Society for Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[12] S. Newman, A. P. Stephenson, M. Willsey, B. H. Nguyen, C. N. Taka-
hashi, K. Strauss, and L. Ceze, “High density dna data storage library via
dehydration with digital microfluidic retrieval,” Nature Communications,
vol. 10, no. 1, p. 1706, 4 2019.

