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Abstract—Domain-specific reconfigurable accelerators
(DSRAs) achieve high performance and energy efficiency
by using specialized processing elements (PEs) instead of
general-purpose alternatives. However, the process of designing,
selecting, and refining the reconfigurable PEs that compose the
accelerator fabric has remained a manual and difficult task.
This paper presents Reconfigurable Accelerator Design using
Iterative Search for Hardware (RADISH) which is a full-stack
framework for automatically identifying and generating PEs
from an application corpus. RADISH uses a genetic algorithm
to iteratively search for and refine the proposed PEs with
a compiler-in-the-loop to guide the search. We show that
RADISH-generated PEs can generalize to both larger instances
of the same application as well as other previously unseen
applications within the same domain. We evaluate a CGRA
architecture using our RADISH-generated PEs and show it
achieves a geometric mean improvement of up to 2.14ˆ and
2.4ˆ power and area respectively over an ALU-based CGRA
designs. In terms of energy, our generated designs achieve a
geometric mean improvement of 2.5ˆ but can achieve gains up
to 28.9ˆ.

I. INTRODUCTION

From embedded systems to data centers, the performance
and energy gap has accelerated the push towards increasingly
specialized accelerators [1], [2]. These systems employ many
accelerators to meet the needs of increasingly compute intensive
and memory demanding applications. However, the non-
recurring engineering costs of ASIC fabrication and FPGA
development remain stubbornly high, and overspecialization
runs the risk of quickly becoming irrelevant in the face of a
rapidly changing application landscape.

Domain-specific reconfigurable accelerators (DSRAs) com-
bine the benefits of hardware specialization with the flexibility
needed to implement different applications within a domain
[3], [4], [5]. But despite tremendous advances in hardware
implementation flows such as Vivado HLS [6], OpenCL-to-
gates [7], and C-to-gates [8], designing a DSRA remains a
tremendous effort, because it requires expertise from both
application domain experts and hardware engineers. Critically,
a domain expert must identify common functionality across
applications worth accelerating. The hardware engineer must
then implement processing elements (PEs) with that function-
ality, perhaps using the tools mentioned above, and report
back to the domain expert if the functionality prevented an
efficient implementation. After sufficient iterations, this yields
an efficient DSRA at the cost of significant time and effort.

In this paper, we present our application-driven tool Reconfig-
urable Accelerator Design using Iterative Search for Hardware

(RADISH) which automatically identifies and generates PEs
for a DSRA. RADISH uses a genetic algorithm to generate
reconfigurable PEs from a given set of domain applications.
The algorithm combines parts of the application using datapath
fusion and then evaluates the resulting PEs by compiling them
onto the applications. By incorporating compilation during PE
generation, RADISH uses metrics such as coverage, utilization,
and communication reduction to iteratively improve the PEs.

We evaluate the RADISH-generated PEs for two application
domains: image processing and linear algebra. We compose the
PEs into a CGRA and show our design achieves a geometric
average improvement of 2.14ˆ and 2.4ˆ in power and area
respectively compared to ALU-based CGRA accelerators. We
also show that the reconfigurable PEs produced by our tool
are able to generalize to support larger application instances
(i.e. larger input image or more iterations), and also other
applications within the same domain.

Our paper makes the following contributions: (1) We define
a novel reconfigurable PE generation technique using a genetic
algorithm formulation for graph partitioning which iteratively
identifies common functionality across applications. (2) We
introduce a compiler-in-the-loop to the genetic algorithm
which exposes metrics such as internal PE utilization and
application coverage when evaluating the fitness of generated
PEs. (3) We implement the technique in the RADISH framework,
and evaluate the quality of generated PEs using real-world
applications and demonstrate results that are competitive with
CGRA-based designs using arithmetic logic units (ALUs).

The rest of the paper is organized as follows. The next section
introduces background on genetic algorithms and defines the
DSRA design problem. Section III introduces the RADISH
tool flow. Section IV evaluates the search procedure and
the generality of generated PEs, and Section V compares
our generated accelerator against CGRA designs. Finally, we
highlight related work in Section VI.

II. BACKGROUND

A. Domain-Specific Reconfigurable Accelerators

The accelerator design spectrum ranges from fully-
specialized to general-purpose hardware. Fixed-function ASICs
achieve maximal efficiency, while FPGAs trade some per-
formance for flexibility provided by full reconfigurability
[9]. More recently, there has been a trend towards domain-
specific reconfigurable accelerators (DSRAs) such as Q100 [3],
Graphicianado [4], and DianNao [5]. These solutions offer a
middle ground between FPGAs and fixed-function ASICs by
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Fig. 1: RADISH flow for generating domain-specific reconfigurable accelerator PEs. Domain applications are converted into
dataflow graphs, partitioned, and then combined into PEs. The PEs are then compiled back onto the applications. A genetic
algorithm iteratively performs this process, refining the PEs at each step.

specializing to a domain. However, as mentioned in Section I,
designing such accelerators remains largely a manual task for
the experts, with few tools that support design automation.

B. Coarse-Grain Reconfigurable Arrays

Coarse-grain reconfigurable arrays (CGRAs) [10], [11]
represent another design point between application-specific
accelerators and general-purpose architectures. On the special-
ization spectrum, CGRAs are more specialized than FPGAs
since they use coarse-grained or larger compute units. At a high
level, CGRAs are an array of compute units or processing ele-
ments (PEs) connected together by an interconnect. Processing
elements can take any number of forms from fine-grained single
arithmetic operators, to larger ALU units, to entire application-
specific components like sorting units. Identifying the set of
PEs that represent common operations within an application
domain is typically done manually.

An example of such an architecture is shown in Fig. 2, where
the PEs are single or compound ALUs. This particular CGRA
architecture will serve as our ALU-based CGRA comparison in
our later evaluations. ALUs are a natural choice of PE because
they are general purpose and have sufficiently fine granularity to
cover all applications. However, because of their generality, the
arithmetic units within an ALU are underutilized and present
opportunities for optimization. For instance, a CGRA for linear
algebra applications might remove bitwise operations from the
ALUs within the PEs, as such applications tend not to use
them.

In this paper, we target CGRAs but our techniques should
also apply to other architectures. As shown in Fig. 2, the DSRA
architecture model we use to evaluate RADISH consists of a
mix of compute PEs connected together with a grid routing
interconnect. Our goal is to automatically identify the PEs that
form the replicated units in the resulting CGRA.

C. Genetic Algorithms

Genetic algorithms [12] are commonly used for solving
search or optimization problems, including graph partitioning
[13]. The core components of genetic algorithms are inspired
by biological evolution: mutation, crossover, and survival of
the fittest.

Genetic algorithms typically start by randomly initializing
sets of parameters where each parameter set (called a genotype)
defines a candidate solution (called a phenotype or individual).
On each iteration, mutation randomly changes some part of the
genotype, and crossover randomly combines two genotypes
into a new one. From the genotypes, the algorithm constructs
the candidate solutions and evaluates them according to some
fitness function. Unfit individuals are eliminated, improving
the quality of the population with each iteration.

/

III. FRAMEWORK AND ENCODING FORMULATION

We now introduce our tool, RADISH, for designing DSRAs.
Figure 1 shows an overview of RADISH. As inputs, RADISH
takes applications written in a custom Python framework
(Section III-A) that facilitates dataflow graph extraction. These
dataflow graphs are then partitioned (Section III-B), and the
resulting partitions are fused together (Section III-C) into
reconfigurable PEs. RADISH comes with a compiler that maps
the PEs back on to the dataflow graphs to evaluate the PEs’
effectiveness in the domain (Section III-D). The compilation
informs a genetic algorithm that re-partitions the application
dataflow graphs. This cycle iteratively improves the generated
PEs according to user-defined cost metrics. Finally, the RADISH
returns the PEs, optionally generating synthesizable Verilog
(Section III-E). The synthesized PEs can then be composed
into a DSRA.

A. Application Representation

RADISH takes as input dataflow graphs that represent
program executions. Nodes are the operations performed and
edges represent data dependencies. To generate such inputs,
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Fig. 2: (a) CGRA architectural model using (b) ALUs, (c)
compound ALUs, or (d) RADISH-generated PEs.
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# a simple L2 distance calculation
def l2_distance(a0, a1, b0, b1):

# convert values to DSL values
A0, A1 = Node(a0, INPUT), Node(a1, INPUT)
B0, B1 = Node(b0, INPUT), Node(b1, INPUT)

# L2 distance
d0, d1 = a0 - b0, a1 - b1
dist0, dist1 = d0 * d0, d1 * d1

# add reduction
dist = dist0 + dist1

# generate the dynamic dataflow graph
dataflow_graph = dist.graph

(a) DSL code

IN IN

SUB

MULT

IN IN

SUB

MULT

OUT

ADD

d0 d1

dist0 dist1

dist

b1a1b0a0

B1A1B0A0

(b) Dataflow graph
Fig. 3: Application DSL code and associated dataflow graph
for L2 distance.

we use a custom Python framework to run domain applications
with specially wrapped inputs, and we dynamically construct
dataflow graphs via operator overloading.

Fig. 3b shows an example of our Python tool to extract
dataflow graphs. Porting existing Python programs to this
framework requires minimal changes. The user can also
introduce custom operations to the dataflow graph. Python
loops, conditionals, and functions are all supported, as the
Node object simply wraps a value to keep track of the dataflow
graph. Unlike a compiler static analysis that works on a
control flow graph of basic blocks, this approach exposes data
dependencies across basic block and memory access boundaries.
RADISH can therefore generate reconfigurable PEs that capture
more behavior.

However, this dynamic approach introduces redundancy:
parts of the program executed many times are represented
many times in the dataflow graph. The PE fusion stage (to be
discussed in Section III-C) has to cope with this duplication by
finding similar or identical parts of the graphs and recombining
them. Using the dataflow from a particular run of a program also
raises the question of generality; our evaluation in Section IV-C
addresses this.

B. Genetic Algorithm and Partitioning

Our main contribution is a formulation of the DSRA
design problem that is amenable to automated search. Genetic
algorithms are frequently used to search large solution spaces,
and we adapted these techniques for use in RADISH.

Inputs to the tool are represented as dynamic dataflow graphs.
We partition each graph into smaller program subgraphs. These
partitions are then deterministically fused to form reconfig-
urable PEs (the phenotype). The behavior of the phenotype
(the evaluated reconfigurable PEs) is entirely determined by
the genotype (the partitioning).

For both the initial partitioning and subsequent partitions
performed during mutation, we use the Kernighan-Lin partition-
ing algorithm [14] to achieve low communication cost between
partitions. The algorithm is seeded by random assignment of
nodes to partitions; it is therefore non-deterministic and suitable
for random initialization and mutation.

1) Initial Partitioning: : Given the application dataflow
graphs, RADISH iteratively partitions each application until all
partitions are smaller than a user specified size. The initial
partition size only determines the maximum size of the initial

+ -

x

/

-

x

x + -

x

/

(a) (b)

Fig. 4: Fusion combines graphs to share compute elements
while introducing reconfigurability. (a) Chi-squared distance,
Euclidean distance, and multiplier input graphs. (b) Resulting
fused graph.

partitioning of each application. During the course of the
genetic search, mutations will combine and split these partitions
arbitrarily to optimize the given cost function.

As mentioned above, dynamic dataflow graphs likely contain
duplication. Ideally, the application graphs would be partitioned
in a way that isolates duplicate subgraphs, so the fusion can
easily identify their similar structure. However, the random
initial partitioning is very unlikely to partition the input dataflow
graph in such a manner. One approach is to rely on mutations
made during genetic search to eventually converge to the right
partitions, but this can be extremely time consuming.

Instead, RADISH seeds the initial partitioning by pre-cutting
edges outside of frequently used subgraphs. We use apriori
graph mining [15] to find frequently occurring subgraphs in the
application dataflow graph. We pre-cut the edges going in to or
out of these frequent subgraphs, encouraging the partitioner to
isolate them and not break them apart. This technique ensures
that the initial partitioning highlights the common structure
in the application, making it easy for the fuser to combine
partitions into high-utilization reconfigurable PEs.

2) Mutation and Crossover: : Mutation and crossover allow
genetic algorithms to explore different parts of the search space.
For mutation, we simply change the partitioning (the genotype)
of the dataflow graph by randomly combining or breaking
apart partitions. We implement crossover between two search
instances by choosing some application and swapping the way
the different instances partition that application.

C. Reconfigurable PE Fusion

Once the applications are partitioned, fusion combines
similar dataflow subgraphs into processing elements that can
be reconfigured to behave as any of their component subgraphs.
Fig. 4 shows an example of fusing three small subgraphs into a
reconfigurable PE. Fusion inserts multiplexors when necessary
to allow the resulting PE to implement the functionality
of the input subgraphs; the multiplier in Fig. 4b requires
multiplexors to choose 2 inputs from the possible 4. These
PEs are guaranteed by construction to implement at least the
functionality of their component parts of the input programs,
but they often support more. Section IV-C demonstrates that
fusion produces reconfigurable PEs that support previously
unseen functionality.

While other user-defined cost metrics guide the genetic
partitioning, fusion aims to maximize resource sharing. Con-
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ceptually, our algorithm (shown in Algorithm 1) iteratively
combines pairs of PEs that have the highest compatibility, a
notion that we will define later. Only fusing the most compatible
PEs ensures that the resulting reconfigurable PEs have high
internal utilization: most configurations will use most of the
PE’s functionality. The iterative, n-way fusion algorithm in
Algorithm 1 is based on a simpler algorithm responsible for
fusing two PEs at a time, inspired by previous work [16], [17].

Both the binary and iterative, n-way fusion algorithms
are deterministic. Thus, the output reconfigurable PEs are
completely determined by the input partitioned applications.
From the perspective of the genetic algorithm, PE fusion
takes the genotype (partitions) and generates the phenotype
(reconfigurable PEs).

1) Binary Fusion: : Prior work [16], [17] developed tech-
niques to fuse two dataflow graphs and maximize resource
sharing via reduction to integer linear programming (ILP). We
use similar techniques to combine two reconfigurable PEs (also
via ILP) in a way that maximizes sharing and preserves all the
possible configurations of the input PEs.

The encoding creates a variable vv1,v2 for every node v1 in
the first input graph and v2 in the second input graph, and
variables ee1,e2 for edges e1, e2 from the first and second input.
These variables indicate whether vertex v1 will be combined
with v2; likewise for the edges. We constrain the edges to only
combine if their endpoints combine. We further constrain the v
variables to only combine alike operations (ex. adders should
only combine with adders). Finally, we instruct the ILP solver
to maximize the number of combined edges and vertices. We
read out the variable assignments to construct a reconfigurable
PE with maximal resource sharing.

At its core, binary PE fusion attempts to solve the minimum
common supergraph problem which is NP-hard. While this
means that fusing entire application dataflow graphs would take
a significant amount of time, fusing pre-partitioned subgraphs is
fast in practice, motivating our partitioning step (Section III-B).

After fusion, PEs may have more input edges than the
operator arity. For instance, the two-input multiplier in Fig. 4b
has four different possible inputs. To handle this, we introduce
configuration signals and multiplexors which allows us to
select between inputs, guaranteeing that the fused result can
implement at least the functionality of the input PEs. This
introduces the minimal amount of reconfigurability necessary
to support the two input graphs.

The results of the PE fusions are used to measure how
“compatible” the two input PEs are. We first define the cost of
a PE, |p|. This is user-defined and should capture the desired
cost metric which could include metrics such as estimated area
of the PE or its critical path. For simplicity, we define cost
as a linear combination of the number of operations and the
number of internal edges.

We measure the compatibility of PEs p1 and p2 based on
the best and worst case of fusion. In the best case, one PE
is a subgraph of another, |p1 ¨ p2| “ maxp|p1|, |p2|q where
“¨” denotes PE fusion. In the worst case, fusion finds no
resource sharing at all, so |p1 ¨ p2| “ |p1| ` |p2|. So we define
compatibility as an interpolation between these two cases, 1
being maximally compatible and 0 being not compatible at all:

Algorithm 1 Iterative Fusion
1: procedure ITERATIVEFUSION(Pinit)
2: Pnew Ð Pinit

3: Pfinal ÐH

4: initialize empty Gcompat “ pV,Eq
5: loop
6: for p1, p2 P pPnew ˆ Pnewq Y pV ˆ Pnewq do
7: V Ð V Y tp1, p2u
8: E Ð E Y tpp1, p2, ESTCOMPATpp1, p2qqu
9: end for

10: mÐ MAXWEIGHTMATCHINGpGcompatq

11: if m is empty then
12: return Pfinal Y V
13: end if
14: Pnew, Pold ÐH,H
15: for p1, p2 P m do
16: c, pfused Ð FUSEpp1, p2q
17: if c ă cthres then
18: E Ð E z pp1, p2q
19: else
20: Pnew Ð Pnew Y pfused

21: Pold Ð Pold Y tp1, p2u
22: end if
23: end for
24: Pisolate Ð ISOLATESpGcompatq

25: Pfinal Ð Pfinal Y Pisolate

26: V Ð V z pPisolate Y Poldq

27: end loop
28: end procedure

cpp1, p2q “ 1´
|p1 ¨ p2| ´maxp|p1|, |p2|q

minp|p1|, |p2|q

2) Iterative Fusion: : We now present an algorithm that
solves the n-way fusion problem: given a number of PEs,
perform pairwise fusions such that overall resource sharing is
maximized while maintaining high utilization. Binary fusion
effectively combines two PEs in a way that maximizes resource
sharing, and compatibility provides a way to measure that
sharing. Naively fusing n PEs using this method will result
in a single huge PE with very low utilization and resource
sharing, simply because some parts of the input application
are not similar. An n-way fusion algorithm needs to crucially
decide what to fuse and when to stop in order to avoid poor
results. We accomplish this by building a compatibility graph
(defined below) that dictates what to fuse.

Our algorithm relies on a few subroutines. MAXWEIGHT-
MATCHING and ISOLATES are standard graph algorithms
from the NetworkX library [18]. MAXWEIGHTMATCHING
finds a set of edges with maximum weight that share no
vertices. ISOLATES finds vertices without any edges. The FUSE
subroutine is the binary fusion algorithm described above.
ESTCOMPAT (estimate compatibility) provides conservative
upper bound on the compatibility of two PEs without calling
the relatively expensive ILP fusion algorithm.

The iterative algorithm centers around the compatibility
graph, defined as Gcompat “ pV,Eq in the listing. The vertices
V in this graph are PEs, and the edges E are weighted with
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the compatibility of their endpoints. The algorithm begins by
taking the given PEs (Pinit) and marking them as unprocessed
by placing them in Pnew. At the start of each iteration, we
update the compatibility graph with unprocessed PEs in Pnew

by adding them as vertices. We add edges between the new
PEs and themselves as well as between them and existing PEs.
New edges are weighted with the estimated compatibility to
reduce the number of calls to the ILP solver.

Once the compatibility graph is updated, we generate a
maximum weight matching of non-overlapping pairs of PEs that
should fuse well. The algorithm then performs these fusions;
if the compatibility is greater than the threshold, we keep it,
otherwise we delete that edge. For those that are kept, the
component PEs are removed from the compatibility graph (via
Pold), and the new PE is added in next iteration.

After each iteration, we remove any isolated nodes from the
graph. These isolates have been determined to incompatible
with anything else, so we move them into the set of PEs to be
returned (Pfinal). The algorithm terminates when the matching
is empty, indicating that there are no useful fusions to be done.
We return the set of PEs removed as well as those remaining
in the compatibility graph.

D. PE Compilation and Evaluation

Once the reconfigurable PEs, or the phenotype, have been
generated, we must evaluate them. Our phenotype evaluation is
an approximation of compiling programs onto a DSRA, repre-
senting how the PEs would perform when running applications
from the given domain. Evaluation first compiles the given
applications onto the generated PEs in a simplified architecture.
From this compilation information, we gather metrics used
to score the phenotype including coverage, utilization, and
communication reduction.

One of the key contributions of RADISH is that we learn
which PEs are effective based on a realistic model of compila-
tion. Ideally, the compilation would reflect both the performance
of the PEs in isolation and how their composition affects
performance. However, a full compilation requires placing and
routing the PEs both internally and externally, which would be
prohibitively expensive for our genetic search. Instead, we make
some simplifying assumptions about the system architecture
to make compilation easier and faster.

Specifically, we assume that PEs are placed optimally within
the fabric for a grid interconnect between PEs. We also assume
that the resulting architecture has an “unlimited” number of
each PE. In reality, if PEs are used more times in the program
than they are present in architecture, we would break down
the program and compile it in stages. This assumption allows
our compiler to work with programs in their entirety, without
worrying about whether or not it can fit onto the resulting
architecture.

Finally, we assume that a dynamic trace is representative
of program behavior. This is the same assumption used early
in the RADISH pipeline to learn the PEs. We validate this
assumption in Section IV-C by demonstrating that the PEs
learned from one set of program traces can be used to compile
different program traces.

With these assumptions, compilation becomes a graph
matching problem: given a program and a set of reconfigurable
PEs, find an assignment of program parts to PEs. This allows
us to use a simple, efficient algorithm for compilation. Given
an application dataflow graph and a PE, we try to map the
outputs of a PE onto all nodes of the program. From each initial
mapping, we use depth first search to match the PE from the
outputs, and try to map each node of the PE onto a node of the
program until we reach the inputs. We rank the compilations
based on how many program nodes were compiled and how
much of the PE was utilized. We greedily accept the best
compilation, contract the compiled program nodes into a graph
of PE nodes, and then repeat until the program graph consists
of only PE nodes (i.e., the entire program is compiled).

1) Quality Metrics: The result of compilation is a set of
program dataflow graphs where operations have been contracted
into PE nodes. PE nodes store the operations in the program
that were compiled and the PE that was used. Edges between
PE nodes represent inter-PE communication that would have to
take place over the router or network on the resulting hardware.
Because of the flexibility of the genetic algorithm, users can
define any metrics to evaluate the compiled graph.

Ideally, the search for reconfigurable PEs would be guided
by a fitness function that measures the quality of a PE after
logic synthesis, such as power consumption and silicon area.
Unfortunately, logic synthesis is prohibitively slow to be
invoked on each candidate PE since compiling our PE to
application dataflow graphs is orders of magnitude faster than
hardware logic synthesis. We therefore rely on proxy metrics
that can be obtained with our compiler.

We choose three metrics: coverage, utilization, and commu-
nication reduction. Higher is better for all three metrics. The
genetic search simultaneously optimizes all of the metrics for
each application, producing a Pareto frontier of solutions (sets
of PEs) that perform well. Section IV evaluates whether the
search can effectively optimize these metrics, and Section V
evaluates how they correlate with hardware metrics like power
and area.

2) Coverage: Coverage measures how much of an applica-
tion graph was successfully compiled, or covered, by the given
set of PEs. We define coverage as the fraction of operations in
an application graph that were covered. Coverage is a metric of
functional generality; an ideal set of PEs will have a coverage
of 1 across all applications. If an application has coverage
below 1, the PEs are not general enough to implement the
desired functionality, so some general purpose computation
such as arithmetic logic units (ALUs) or lookup tables (LUTs)
are required.

Note that our algorithm will almost always produce PEs
with perfect coverage on the training applications, because the
partitions of those application seeded the PE fusion. Perfect
coverage is not guaranteed, however; the greedy compilation
could possibly make a suboptimal choice that prevents perfect
coverage.

3) Utilization: PE utilization measures how much of the
reconfigurable PEs are active, as they may have more compute
nodes than can be activated in any given configuration. We
define a compiled PE’s utilization as the fraction of used
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operations in that compiled instance. The utilization of an
application graph is then defined as the average utilization of
the PE compilations instances.

Notice that while a more general ALU is general enough
to cover the graph, the generality comes at the cost of very
low utilization. Low utilization manifests as increased area and
static power needed to maintain the unused functional units.
Ideally, generated PEs will have 100% utilization whenever
they are used; in practice this is impossible for reconfigurable
PEs, so instead we attempt to maximize utilization by encoding
it within the genetic search cost function.

4) Communication Reduction: Finally, communication re-
duction is defined as the number of inter-PE wires in the
original application graph versus in the compiled graph. These
graph edges correspond to external wires that must be supported
by the CGRA routing fabric. These external routing wires are
significantly more expensive than internal wires or intra-PE
wires that occur between operators within a PE We define
communication reduction as the fraction of edges in the
compiled graph versus the original application graph.

E. Hardware Implementation

Once the reconfigurable PEs are identified, our framework
generates ASIC synthesizable Verilog for each of the PEs. Prior
to generating Verilog, our tool must first resolve arity issues
for each operator by introducing reconfigurability. Recall that
fusion may produce fused dataflow graphs where there are
more input operands to an operator than the operation can
take. For an operator node with N ą M inputs where M
is the arity of a node, we introduce N -wide multiplexors
and introduce configuration wires connect to select ports.
These configuration wires introduce the minimal amount of
reconfigurability necessary to support the provided application
graphs and computation subgraphs.

IV. GENETIC ALGORITHM EVALUATION

This section evaluates our PE generation algorithm, including
the quality of generated PEs. We explore whether the generated
PEs generalize to larger instances of the same application as
well as to new applications. We also compare generated PEs
against CGRA using ALUs as their PEs shown in Fig. 2. In
this section, all evaluations use metrics such as utilization and
communication reduction.

Our evaluation draws sample applications from two appli-
cation domains: image processing and linear algebra. Table I
details the sample applications along with the input sizes used
in PE generation. We intentionally keep input sizes small to
produce small data flow graphs, allowing the genetic search
to perform more iterations with larger populations. Using
smaller application instances is sufficient as long as their
computation structure is representative of larger workload
instance. In Section IV-C, we show that the PEs generated
by small instances do in fact generalize to larger application
instances.

Application Input size # nodes
Geometric Interpolation 5 ˆ 5 265
Convolution 4 ˆ 4, 3 ˆ 3 257
Anisotropic Diffusion 3 ˆ 4 262
Fast Fourier Transform 8 216
Harris Corner Detection 3 ˆ 3 224
Laplacian 3 ˆ 3 212
Median Filter 3 ˆ 3, 3 ˆ 3 295
Lucas-Kanade Optical Flow 3 ˆ 3 287
Sobel Operator 5 ˆ 5 385

(a) Image processing domain workloads
Application Input size # nodes
Fast Fourier Transform 8 216
Linear Least Squares Solver 16 ˆ 2 155
Gaussian Elimination 5 ˆ 5 185
Matrix Inversion 4 ˆ 4 228
Matrix Multiply 4 ˆ 4, 4 ˆ 4 192
Covariance Matrix 4 ˆ 4 364

(b) Linear algebra domain workloads
TABLE I: Image processing and linear algebra domain work-
loads. Small application instances allow RADISH to rapidly
search the solution space. All application inputs are matrices,
and the second column lists their sizes.

A. Search Progress

We now evaluate whether RADISH’s genetic search algorithm
effectively finds high-quality solutions according to the given
metrics. We perform the searches on an Intel Core i7-8700K
CPU with 6 cores (12 threads) at 3.70 GHz and 16 GB of
memory. We configured the search to iterate through 100
generations, each with the population size of 50 individuals.
RADISH took 9 and 16 hours to generate PEs for the linear
algebra and image processing domains, respectively.

Fig. 5 demonstrates that our genetic algorithm improves
the set of solutions identified over time. Because the search
optimizes many variables at once (Section III-D1), we are
interested in solutions on a Pareto-optimal surface. The surface
is high-dimensional and not conducive to visualization, so we
instead plot the cumulative number of Pareto-optimal solutions
over time. Fig. 5 shows that the algorithm does not stagnate.
Instead, the line continues to improve which indicates that
RADISH continues to find Pareto-optimal solutions throughout
the entire search.

B. Genetic Search Results

To evaluate the quality of the results, we plot the communica-
tion reduction and utilization of all Pareto optimal solutions in
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Fig. 5: Our genetic algorithm continues to find Pareto-optimal
solutions even later in the search.
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(b) Image Processing Metrics
Fig. 6: Utilization versus communication reduction results (up and to the right is better). The Pareto optimal results (circles)
generated by our algorithm have higher communication reduction and utilization than ALUs (ˆs) and double ALUs (triangles).
All results have full application coverage.

Fig. 6. All solutions had nearly perfect coverage, so the results
are not shown. Each solution (set of PEs) has a marker for
each application. The different colors represent the different
benchmarks in the domain: for example, a green circle in
Fig. 6a represents a Pareto optimal set of PEs being compiled
on the FFT application. Green circles lower and to the left are
Pareto optimal in some way, just not on the FFT benchmark.

We compare the RADISH-generated PEs to ALUs (ˆs in
the plot) and fused ALUs (triangles) that are traditionally used
in CGRA design (see Fig. 2). In our framework, an ALU is
represented as a family of operators all connected to the same
two inputs and one output. It is reconfigurable only by selecting
the single operation to be performed. A fused ALU is an ALU
connected to both an output and another ALU. The second
ALU must take only one input; the other comes from the first
ALU. We represent these ALUs as graphs in our framework
and run them through the same compilation and evaluation
flow as the generated PEs.

The results in Fig. 6 show that RADISH-generated PEs have
significantly higher communication reduction and utilization
than ALUs. Unlike ALUs, PEs can activate multiple operations
at a time (higher utilization) and replace inter-PE edges with
intra-PE edges (communication reduction). The results also
highlight the fact that solutions may perform better on some
applications than others. By exploring a large swath of the
design space at once, RADISH allows the designer to choose
the solution that optimizes performance on the most important
applications.

The geometric interpolation benchmark is particularly note-
worthy because some solutions (red markers in Fig. 6b) achieve
100% communication reduction. The dataflow graph for this
workload is “flat” rather than “deep”, performing many small
operations in parallel. We do not count edges from application
inputs or to application outputs in communication reduction
(as they are not part of a PE), and the generated PEs capture
all of the remaining structure.

C. Generated Processing Element Generality

One of the main benefits of a DSRA is flexibility within
the domain. Unlike ASICs, DSRAs promise to accelerate new

applications that were not considered at design time, as long as
those applications fall within the same domain. In Section III-A
we detail how and why we use dynamic dataflow traces as the
input to our tool. The approach offers many simplifications, but
raises the issue of generality. Programs may exhibit different
characteristics with different data or dataset sizes. This section
evaluates the generality of the set of PEs generated by our
tool.

Coverage is the metric of concern when discussing generality.
If a set of PEs has lower than 100% coverage for an application,
the compiler could not map all functionality onto the PEs.
To run these applications, the architecture would need more
general-purpose hardware like ALUs or LUTs as a fallback.
Using the general purpose fallback will reduce performance
compared to the specialized PEs, so higher coverage is always
better.

We use cross validation to measure two kinds of generality:
application generality and domain generality. Results are
shown in Fig. 7 and discussed later. We performed the genetic
searches described in this section with population size 10 for
10 generations.

1) Application Generality: Application generality is defined
as how well PEs support the same application with different
parameters or dataset sizes. Since inputs to our tool are dataflow
graphs generated from a specific application instance, it is
not obvious whether PEs generated from one instance of the
application are sufficient to implement others. To measure
application generality, we first generate PEs from instances of
an application that differ in parameter or input dataset sizes.
We then introduce a new, larger instance of the application
and attempt to compile it using the generated PEs. Ideally, if
the generated PEs generalize to other application instances,
they would achieve 100% compilation coverage on the new
application instance, and the other metrics would be comparable
to those from the training set.

Fig. 7a shows the results when we use four application
instances (training set) to generate PEs and compile them for
a fifth application instance. The black ˆ shows the metrics for
the holdout instance, and the gray bar shows the range of the
metric for the instances from the training set. When the ˆ lies
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(c) Image Processing Domain Generality
Fig. 7: Generality tests via cross validation. The holdout
benchmark is on the y-axis. The gray bar shows the range of
a metric for the training set itself, while the metric for the
holdout is the black ˆ.

in the gray bar, the tool performed roughly as well on the new
instance as it did on the ones it trained on.

The results in Fig. 7a show that our tool successfully
generalizes to unseen instances of seen applications. Notably,
RADISH achieves 100% coverage on all benchmarks (not
shown), meaning that it successfully compiled all unseen
instances. For other metrics - utilization and communication
reduction - we find that all applications are comparable to
those from the training set.

2) Domain Generality: Domain generality measures how
well PEs support new, unseen applications from the same
domain. We use an experiment similar to the previous one
to demonstrate that our tool does not suffer from over-
specialization to a specific application. For each application
a in a domain, we generate PEs based on the entire domain
except a. We then compile application a with those PEs, and
compare the resulting metrics with those from compiling the
PEs on the other applications.

Fig. 7b and Fig. 7c show the cross validation results. The
results are mostly positive, with most ˆs laying inside the
gray bars to show that the test performance was within that
of the training set. Like application generality, we also find
that most generated PEs achieve nearly 100% coverage against
the holdout benchmarks. We observe a few anomalies which
do not score well against all three metrics; this is due to
that fact that some applications do not compile well against
PEs learned from the rest of the domain. In particular, the
median filter does not score well in coverage, communication
reduction, and utilization. This indicates that the application
has a different structure of operator use, and is (in some sense)
not representative of the domain.

V. HARDWARE EVALUATION

A. Methodology

To evaluate RADISH, we model a simple CGRA-style
accelerator with PEs arranged in a grid array and memory on
the periphery (see Fig. 2). For each domain, we use RADISH to
generate 40 different sets of Pareto-optimal PEs. We compose
each of those into a CGRA fabric to form a DSRA for that
domain, and we compare against a CGRA with the traditional
ALU and fused-ALU PEs.

We compare the power, area, latency, and energy usage of the
two designs. We estimate the power, area, and latency per PE
using Synopsys Design Compiler using a 32 nm generic library.
We then use compilation results to determine the number of
occurrences of each PE. Application compute power and area
is estimated by multiplying power and area per PE by the
number of PE occurrences. Application latency is estimated
by extracting the estimated critical path of each PE from post-
synthesis results. We assume an adjustable clock generator
which clocks the CGRA at the maximum possible frequency.
The clock period is set by taking the compiled application and
identifying the block with the longest critical path. The latency
of each application is then computed as the longest path of
PEs in the compiled graph.

We also compare against ALU-based coarse-grained re-
configurable array designs to estimate the potential power
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(f) Image Processing Energy
Fig. 8: Power, area, latency, and energy improvement of CGRA with RADISH-generated PEs over an ALUs. Power and area
reported as geometric mean over applications for each Pareto optimal design. RADISH designs have similar latency but lower
power yielding better energy efficiency. Latency and energy improvements are correlated with communication reduction. The
latency and energy plots show the top 5 solutions (across the geometric mean of the applications). Colors correspond to different
solutions while shapes denote different applications. For example, in (c), all red markers are part of the same design, and the
red “X” is the FFT application in that design.

and area savings of our DSRA designs. In particular, we
compare against CGRA designs which use ALUs or compound
ALUs PEs shown in Fig. 2. Each ALU element contains four
arithmetic operations (add, subtract, multiply, popcount), 12
bitwise operations (binary and unary OR, XOR, NOT, and
AND, and bit shifts), and six comparison operations. Division
is implemented as a separate unit for ALU-based designs.

For each set of PEs in the CGRA and DSRA designs, we
assume a square grid interconnect between PEs in the array. We
estimate the size of the router based on the maximum number of
inputs that are used for any application and add it to the number
of ports needed to communicate with neighboring routers. To
do this, we first compile the application with the generated
PEs then find the maximum number of input ports p of any
compiled PE in the application. This provides an estimate of
how many wires must feed into the router connected to the PE
with the most inputs. We then assume that each router connects
to its neighboring routers also with p ports and that routers use
an all-to-all crossbar topology. We then estimate the power and
area required to implement each router using Synopsys Design
Compiler. Total power and area per application is estimated
by determining individual PE power and area, and adding it to
the estimated power and area to support interconnect routers.

B. Results

The relative power, area, latency, and energy results for each
application within the linear algebra and image processing
domains is shown in Fig. 8. Results show the improvements
for all of the Pareto-optimal solutions (sets of PEs) against the
single ALU-based CGRA design.

We find that in most cases, RADISH is usually able to
generate solutions which are better than CGRAs with ALU PEs.
For linear algebra, we observe that the geometric mean power
and area improvements of RADISH-generated designs over
ALU-based CGRAs is 1.4ˆ and 1.5ˆ respectively. However,
for certain Pareto optimal designs, we observe power and area
improvements of up to 3.18ˆ and 3.24ˆ respectively. For
image processing, our results yield a geometric mean power
and area improvement of up to 2.14ˆ and 2.4ˆ respectively.
In the best cases, we observe up to 3.7ˆ and 4.5ˆ power and
area improvement respectively.

Unlike ALU PEs, our generated solutions do not contain all
possible operators which improves the internal utilization of
our PEs, and translates to fewer idle datapaths and compute
units. For most RADISH generated designs, we find that router
interconnect power and area consumes on average between
40.1% of the power and 47.4% of the area for linear algebra
benchmarks and image processing benchmarks. For ALU-
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based designs, routing interconnects still consume between
22.5% to 27.4% of the total accelerator power. This is because
ALU-based CGRAs require less routing between routers since
there are fewer inputs per PE. However, since more ALUs
are required to implement an application, they require more
routers than our generated DSRA designs. The high routing
power and area component of our DSRA imposes an Amdahl’s
limitation on the gains that can be achieved by improving the
PEs in the fabric. Finally, in terms of PE count, our generated
DSRA designs use between 1.1ˆ to 6.3ˆ fewer PEs when
using our generated blocks than when using ALUs.

In terms of latency, we find that our RADISH-generated
CGRAs on average have similar latencies as ALU-generated
block (Fig. 8b and Fig. 8e). This is because the critical path of
our PEs are longer because they contain many more operators
and configuration logic. However, in terms of energy efficiency,
RADISH-generated designs achieve a geometric mean energy
improvement of 1.7ˆ and 2.5ˆ for image processing and
linear algebra respectively. In some cases, energy efficiency
improvements can reach up to 11.7ˆ for image processing and
28.9ˆ due to both power and latency improvements afforded
by RADISH designs.

VI. RELATED WORK

Domain-specific accelerators have an established history
which dates back to the 1960s [19] and has been a subject
of continuous interest. Many prior works rely on manually
identifying common reconfigurable processing elements (PEs)
and design patterns [20] to better abstract the commonly
used hardware structures. However, these approaches rely on
designer insights to identify PEs, and cannot automatically
identify and exploit common computational structures within
an application domain. Most recent CGRA-based work relies
on manually specified PEs such as ALUs or compound
ALUs [21]. Prior work such as automatic instruction set
customization [22], [23] and GreenDroid [24] are limited to
basic blocks boundaries when identifying potential fragments
of computation to accelerate. Template-based approaches such
as [25], [26] histogram the number of edges between different
type of nodes in the dataflow graph; frequent edges transitions
between operators are used to build up templates. As a result,
template-based approaches are limited to generating smaller
sized PEs and do not scale as well to capture larger more
global computation structures.

The most similar work to ours is Totem [27] which proposes
a custom reconfigurable array generator for a target domain of
applications. However, Totem combines datapaths at the netlist
level which only contains coarser-grained elements such as
ALUs, registers, and RAMs; RADISH combines datapaths at
the operator level which allows more efficient fusions at the
arithmetic operator level. Brisk et al. [16] propose datapath
fusion using ILP to generate domain-specific accelerators which
is later used by Stojilovic et al. [17]. RADISH’s datapath fusion
algorithm is similar to theirs; however, unlike these prior works,
we also provide a compiler-in-the-loop that guides the search
using higher-level cost metrics.

The PE identification and refinement process proposed in
this work is similar to the task of instruction set customization

(each PE is a new instruction). Huang et al. [28] propose an
instruction cosynthesis formulation using simulated annealing
to generate an instruction set and map code to generated
instructions. Clark et al. [29], [22], [30] propose generating
custom instructions which are realized using a tightly coupled
coprocessor unit with a general-purpose core. Park et al. [31]
propose CGRA Express which dynamically fuses functional
units to operate in the same cycle but still relies on general-
purpose interconnects to connect the fused elements. Unlike
these prior works, our work uses a higher-level cost function
which includes compilation coverage, block utilization, and
communication reduction.

More recently, there has been a resurgence of interest
in automatically generating domain-specific accelerators for
emerging application domains and increasingly complex work-
loads. GreenDroid [24] and conservation cores [32] both
propose a sea of fixed-function accelerators architecture to
accelerate portions of the Android kernel. However, unlike
our work, these works limit acceleration to basic blocks
identified by hot code profiling and do not consider more
global structures across applications. More recently, Prabhakar
et al. [20] propose generating reconfigurable hardware from
parallel patterns but their technique still requires designer
expertise to identify patterns. Nowatzki et al. [23] proposed
a new ILP-based technique for automatically discovering
instruction set customizations, Their work also limits their
search within program basic blocks which limits the size and
scope of the PEs that are discovered. Cong et al. [33] propose
accelerator-rich CMPs which is a similar sea of accelerator
architecture for domain-specific acceleration. Coole et al. [34]
approach a similar problem to ours with a different approach;
they use a clustering-based algorithm, whereas we use a genetic
algorithm guided by a high-level cost function.

Finally, our work uses dataflow graphs for simplicity and
to expose sufficient information to the ILP datapath fusion
algorithm. Other approaches such as modulo scheduling [35]
or parallel patterns [36] offer more compact representations but
the coarser granularity abstracts away datapath details required
for fusion. Basic block representations such as those used
in [24] are limiting because it limits fusion to within the basic
block; by unrolling the datapath graph, RADISH is not limited
to basic blocks.

VII. CONCLUSION

We presented RADISH, a tool for automatically generating
reconfigurable PEs from a given set of applications. We use
a genetic algorithm to combine a novel PE fusion algorithm
and a compiler-in-the-loop for evaluating PEs. The algorithm
iteratively improves the solution quality, resulting in PEs that
outperform traditional CGRA PEs.
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